Team:Goettingen/Team/DAC

From 2013.igem.org

(Difference between revisions)
( )
(Results and Discussion)
 
(23 intermediate revisions not shown)
Line 43: Line 43:
===DAC Team===
===DAC Team===
==Introduction==
==Introduction==
-
In order to find new antibacterial compounds, we focused on the signaling molecule bis-(3’,5’)-cyclic dimeric adenosine monophosphate (c-di-AMP) as it has proven to be an essential second messenger in many pathogenic Gram-positive bacteria (Witte ''et al.'', 2008). It was reported to have a crucial functions in cell wall synthesis and spore formation in ''Bacillus subtilis'' (Oppenheimer-Shaanan ''et al.'', 2011; Mehne ''et al.'', 2013). Interestingly, both absence and excess of c-di-AMP have detrimental effects on cell growth and morphology (Luo and Helmann, 2012; Mehne ''et al.'', 2013).  
+
In order to find a novel target that can be inhibited by new antibacterial compounds, we focused on the recently discovered signaling molecule bis-(3’,5’)-cyclic dimeric adenosine monophosphate (c-di-AMP). c-di-AMP was shown to be an essential second messenger in many important pathogenic Gram-positive bacteria (Witte et al., 2008). Moreover, c-di-AMP has a crucial function in cell wall synthesis and spore formation in ''Bacillus subtilis'' (Oppenheimer-Shaanan ''et al.'', 2011; Mehne ''et al.'', 2013). Interestingly, both lack and excess of c-di-AMP have detrimental effects on cell growth and morphology (Luo and Helmann, 2012; Mehne ''et al.'', 2013).
-
Knowing this information it makes sense that we take a closer look at the enzyme, the diadenylate cyclase, which produces c-di-AMP.  
+
Based on these observations, it makes sense that we take a closer look at the enzyme, the diadenylate cyclase (DAC), which produces c-di-AMP. The DAC CdaA is conserved among several Gram-positive bacteria like ''B. subtilis'', and in the important pathogenic bacteria ''Streptococcus pneumoniae, Staphylococcus aureus'' and ''Listeria monocytogenes'' (Corrigan and Gründling, 2013). So far, the DAC DisA from ''B. subtilis'' has been purified and crystallized (Witte ''et al.'', 2008). However, this protein is not present in all Gram-positive bacteria as well as in many pathogenic bacteria. Therefore we decided to concentrate on the DAC CdaA from ''L. monocytogenes'', which is - as mentioned above - well-conserved in all bacteria that need c-di-AMP for growth!
-
The cyclase domain is conserved among several Gram-positive bacteria like ''B. subtilis'', ''Streptococcus pneumoniae'', ''Staphylococcus aureus'' and ''Listeria monocytogenes'' (Corrigan and Gründling, 2013). So far, the diadenylate cyclase DisA from ''B. subtilis'' has been purified (Witte ''et al.'', 2008). However, the purification and crystallization of DisA comes along with some difficulties so we decided to concentrate on the diadenylate cyclase in ''L. monocytogenes'', DacA.
+
==Results and Discussion==
==Results and Discussion==
Line 52: Line 51:
<html><img src="https://static.igem.org/mediawiki/2013/5/51/Goe-greenColi-labcoat.png" style="height: 200px;position: absolute;top: 1347px;left: 361px;" /></html>
<html><img src="https://static.igem.org/mediawiki/2013/5/51/Goe-greenColi-labcoat.png" style="height: 200px;position: absolute;top: 1347px;left: 361px;" /></html>
<html><img src="https://static.igem.org/mediawiki/2013/6/6e/Goe-greenColi-crystal.png" style="position: absolute;top: 3565px;left: 500px;z-index: 3;" /></html>
<html><img src="https://static.igem.org/mediawiki/2013/6/6e/Goe-greenColi-crystal.png" style="position: absolute;top: 3565px;left: 500px;z-index: 3;" /></html>
-
As the cloning of the full-length (273 aa) membrane-bound DacA (Lmo2120) into ''Escherichia coli'' failed, we excluded the trans-membrane domains meaning we chopped off the first 100 amino acids. Nevertheless, the resulting truncated part still included the essential cyclase domain, and therefore represents one of our favorite BioBricks: [http://parts.igem.org/Part:BBa_K1045003 BBa_K1045003]!
+
Unfortunately, cloning of the full-length gene, encoding the membrane-bound DAC, DacA (Lmo2120) using ''Escherichia coli'' failed. Therefore, we decided to clone a truncated ''dacA'' gene, that encodes a DAC enzyme, lacking the trans-membrane domain. In this protein the first 100 amino acids are missing. Nevertheless, the resulting truncated part still included the essential DAC domain, and therefore represents one of our favorite BioBricks: [http://parts.igem.org/Part:BBa_K1045003 BBa_K1045003]!
-
Conducting several experiments we proved that the truncated DacA protein ([http://parts.igem.org/Part:BBa_K1045003 BBa_K1045003]) was not only active ''in vivo'', but also ''in vitro''. Moreover, we were able to purify the diadenylate cyclase in large scale for determining its protein structure! One can now further search for chemical compounds that interfere with the activity of the cyclase by computational modeling.
+
By conducting several experiments, we proved that the truncated DacA protein (BBa_K1045003) was not only active ''in vivo'', but also did it's job ''in vitro''. Moreover, we were able to purify the DAC domain in large scale for determining its 3D structure! Using the structure data, one can now search for chemical compounds that interfere with the activity of the cyclase either by testing with available chemical libraries or by computational modeling. In the following text, the experiments will be explained in more detail.  However, if you wish to get even more details, please visit the [[Team:Goettingen/Parts|Parts Registry]] or [[Team:Goettingen/NoteBook|our LabBook.]]
 +
The truncated DacA protein ([http://parts.igem.org/Part:BBa_K1045003 BBa_K1045003]) was extended with an N-terminal ''Step''-tag allowing the rapid purification using the ''Strep''-tag:Streptactin purification system. Synthesis of our protein is driven by a T7 promoter. This promoter is recognized by the T7 polymerase, which is encoded in the genome of the <i>E. coli</i> strain BL21. Synthesis of the T7 polymerase can be controlled by Isopropyl-β-D-thiogalactopyranoside (IPTG). The generated plasmid was then used to transform the <i>E. coli</i> strain BL21, which is a powerful strain for synthesis of recombinant proteins. In contrast to Gram-positive bacteria, the Gram-negative bacterium ''E. coli'' does not produce c-di-AMP and growth is not affected by the signaling molecule.
-
Following, the experiments will be explained in more detail. However, if you wish to get even more details, please visit the [[Team:Goettingen/Parts|Parts Registry]] or [[Team:Goettingen/NoteBook|our LabBook.]]
+
In order to analyze the DAC activity ''in vivo'', DAC production by the ''E. coli'' clones was induced by adding IPTG. The cells were then lysed to extract c-di-AMP from the cells.  
-
The truncated DacA protein ([http://parts.igem.org/Part:BBa_K1045003 BBa_K1045003]) was extended with an N-terminal Strep-tag allowing easy purification steps. Moreover, this construct was brought under the control of a T7-promoter enabling us to induce the expression by addition of isopropyl-β-D-thiogalactopyranosid (IPTG). The ''E. coli'' strain BL21 was then transformed with this construct. (The Gram-negative bacterium ''E. coli'' does not produce c-di-AMP and is not severely affected by the signaling molecule in contrast to Gram-positive bacteria.)
+
By performing the SDS PAGE, we could nicely show that the desired protein was well-produced (Fig. 1). Furthermore, the presence of c-di-AMP in the supernatant of the lysed bacteria was confirmed using LC-MS/MS. Thus, we can conclude that the truncated DacA protein codes for an DAC domain that is active ''in vivo''.
-
 
+
-
In order to analyze the cyclase activity ''in vivo'', the ''E. coli'' clones were induced to express the protein by the addition of IPTG. The cells were then lysed to extract c-di-AMP from the cells.
+
-
 
+
-
By performing SDS gel electrophoresis it was nicely shown that the desired protein was highly expressed (Fig. 1). Furthermore, the presence of c-di-AMP in the supernatant of the lysed bacteria was confirmed using LC-MS/MS. Thus, one can conclude that our truncated DacA protein codes for an active adenylate cyclase domain ''in vivo''.
+
https://static.igem.org/mediawiki/2013/7/70/Goe-dac-fig-1.png
https://static.igem.org/mediawiki/2013/7/70/Goe-dac-fig-1.png
-
Fig. 1.''' Confirmation of the high expression of DacA.''' The SDS gel electrophoresis confirmed the high expression of DacA Lmo2120 in three biological replicates showing a thick band at about 20 kDa; Lane 1: Thermo Scientific Page Ruler Plus Prestained Protein Ladder.
+
Fig. 1.''' Confirmation of DAC production.''' The SDS PAGE revealed high-level DAC production by three biological replicates. As expected, the DAC domain has a molecular wight of about 20 kDa; Lane 1: Thermo Scientific Page Ruler Plus Prestained Protein Ladder.
-
Diadenylate cyclases catalyze the condensation reaction of two molecules ATP to a single molecule c-di-AMP while releasing two pyrophosphate molecules consisting of the β-γ-phosphates of each ATP (Fig. 2). In order to analyze the cyclase activity of DacA ''in vitro'', we performed an assay in which these pyrophosphate molecules were used as evidence for the reaction. Among other things, the assay included a pyrophosphatase that cleaves the pyrophosphate molecule in free phosphate molecules, malachite-green and molybdate. Malachite-green forms a complex with free phosphate molecules and molybdate that can be measured due to its absorption spectrum. With this ''in vitro'' assay the concentration of free phosphate molecules and thus the conversion rate of ATP to c-di-AMP was analyzed.
+
DACs catalyze the condensation reaction of two molecules of ATP to a single molecule c-di-AMP, while releasing two pyrophosphate (PP) molecules, consisting of the β-γ-phosphates (P) of each ATP (Fig. 2). In order to analyze the DAC activity ''in vitro'', we performed an assay in which the generation of PP molecules served as an indicator for c-di-AMP production. Among other things such as malachite-green and molybdate, the assay included a PP phosphatase that cleaves the PP molecule into free P molecules. Malachite-green forms a complex with free P molecules and molybdate stabilizes the complex. The product absorption can be measured at a wavelength of 630 nm. With this ''in vitro'' assay, the concentration of free P molecules and thus the conversion rate of ATP to c-di-AMP was analyzed.
-
Our results confirmed that DacA Lmo2120 acts as an active enzyme in the presence of a divalent cation, ATP and a buffer system at pH 8 (''in vitro''), however, the catalysis rate ''in vivo'' seems to be much more efficient.  
+
Our results confirmed that the DAC domain of the DacA enzyme (Lmo2120) is active in the presence of a divalent cation, ATP and a buffer system at pH 8 (''in vitro''), however, the catalysis rate ''in vivo'' appears to be much more efficient.  
<html><a href="https://static.igem.org/mediawiki/2013/7/7f/Goe-dac-fig-2.png" target="_blank"><img src="https://static.igem.org/mediawiki/2013/7/7f/Goe-dac-fig-2.png" width="750"/></a></html>
<html><a href="https://static.igem.org/mediawiki/2013/7/7f/Goe-dac-fig-2.png" target="_blank"><img src="https://static.igem.org/mediawiki/2013/7/7f/Goe-dac-fig-2.png" width="750"/></a></html>
-
Fig. 2. '''Cyclic di-AMP production and degradation.''' Cyclic di-AMP is produced from two molecules of ATP by diadenylyl cyclase (DAC) enzymes and degraded to pApA by phosphodiasterases. (Edited from Corrigan and Gründling, 2013)  
+
Fig. 2. '''c-di-AMP production and degradation.''' c-di-AMP is produced from two molecules of ATP by DACs and degraded to pApA by phosphodiasterases. (Edited from Corrigan and Gründling, 2013)  
-
Finally, we are coming to the core of our project, the protein structure of DacA! The molecular structure of DacA can lead to the discovery of new antibacterial substance classes ''in silico'', which later can be used to treat patients.
+
Finally, we are coming to the core of our project, the protein structure of the DacA DAC domain! It is very helpful to have the molecular structure of a DAC in hands because it allows to perform ''in silico'' experiments. These ''in silico'' experiments can lead to the discovery of new antibacterial substance classes, that specifically inhibit DAC activity. The final goal is to use potential antibiotics to treat patients that suffer from infection with pathogenic Gram-positive bacteria.
-
In order to purify a large amount of this protein, our BioBrick [http://partsregistry.org/Part:BBa_K1045003 BBa_K1045003] with an N-terminal Strep-tag was expressed in ''E. coli'' under the control of a T7-promoter. The expression was again induced by supplementing the growth medium with IPTG. The high expression was confirmed by SDS gel electrophoresis with a resulting thick band at the size of 20 kDa (Fig. 3). The ''E. coli'' strain was grown in large scale with the result that 10 l of cell cultures were lysed and purified (Fig. 3).
+
In order to purify a large amount of this protein, we used our BioBrick [http://partsregistry.org/Part:BBa_K1045003 BBa_K1045003] to produce the N-terminally ''Strep''-tagged DAC domain in ''E. coli''. Expression was confirmed by SDS PAGE and the protein showed a molecular weight of about 20 kDa (Fig. 3). The ''E. coli'' strain was grown in a large scale (10 liters), the cells were harvested by centrifugation, lysed and the protein was purified by affinity purification (Fig. 3).  
<html><a href="https://static.igem.org/mediawiki/2013/f/fe/Goe-dac-fig-3.png" target="_blank"><img src="https://static.igem.org/mediawiki/2013/f/fe/Goe-dac-fig-3.png" width="750" /></a></html>
<html><a href="https://static.igem.org/mediawiki/2013/f/fe/Goe-dac-fig-3.png" target="_blank"><img src="https://static.igem.org/mediawiki/2013/f/fe/Goe-dac-fig-3.png" width="750" /></a></html>
-
Fig. 3. '''SDS gel showing overexpression and purification of DacA.''' (A) Lane 1: Thermo Scientific PageRuler Plus Prestained Protein Ladder; NI: Non-induced, Clone contained the cyclase domain of which the activity was not induced; I: Induced, Clone contained the cyclase domain of which the activity was induced by addition of isopropyl-ß-D-1-thiogalactopyranoside (IPTG); L: Lysate; FT: Flow-through; After wash 1 our protein was purified.
+
Fig. 3. '''SDS PAGE showing high-level production and purification of the DAC domain.''' (A) Lane 1: Thermo Scientific PageRuler Plus Prestained Protein Ladder; NI: Non-induced clone, the cells did not produce the DAC domain and c-di-AMP; I: Induction of ''dac'' expression with IPTG, the clone synthesized the DAC domain and c-di-AMP was detected; L: Lysate; FT: Flow-through; the protein eluted in the first elution fraction.
-
Having dialyzed and concentrated the eluted protein, we obtained a protein concentration of 10 mg/ml, which was sufficient to perform the crystallization reaction. Very nice crystals were already received in a trial when testing different conditions (Fig. 4A). In order to find the perfect supplements for growing our crystals, the whole procedure was repeated. The crystal yields an x-ray diffraction pattern with a resolution of 2,8 Å (Fig. 4B,C). The dataset was measured at the EMBL Hamburg Beamline P13 at the PETRA III synchrotron on the DESY campus.  
+
Having dialyzed and concentrated the purified protein, we obtained a protein solution with a concentration of about 10 mg/ml, which was sufficient to perform a crystallization screening. Luckily, we have obtained very nice crystals in the initial crystallization screen (Fig. 4A). In order to find the perfect supplements for growing our crystals, the whole procedure was repeated and the conditions were refined. The crystals yielded an x-ray diffraction pattern, with a resolution of 2,8 Å (Fig. 4B,C). The dataset was measured at the EMBL Hamburg Beamline P13 at the PETRA III synchrotron on the DESY campus, using a PILATUS2 6M X-ray detector (https://www.dectris.com/).  
-
Finally, we were also able to obtain the protein structure (Fig. 5)! The structure shows a globular protein with a distinct ATP-binding cleft. The ribbon model demonstrates the general structure composed of α-helices and β-sheets.
+
Finally, we were also able to obtain the protein structure (Fig. 5)! The structure shows a globular protein with a distinct ATP-binding cleft. The ribbon model demonstrates the secondary structure composed of α-helices and β-sheets.
<html><a href="https://static.igem.org/mediawiki/2013/a/a8/Goe-dac-fig-4.png" target="_blank"><img src="https://static.igem.org/mediawiki/2013/a/a8/Goe-dac-fig-4.png" width="750"></a></html>
<html><a href="https://static.igem.org/mediawiki/2013/a/a8/Goe-dac-fig-4.png" target="_blank"><img src="https://static.igem.org/mediawiki/2013/a/a8/Goe-dac-fig-4.png" width="750"></a></html>
-
Fig. 4. '''Crystals and diffraction pattern.''' Nice crystals were received with a medium concentration of alcohol and other supplements '''(A).''' X-ray diffraction image of DacA (Lmo2120) crystals '''(B)'''; the highlighted box is shown enlarged '''(C)'''. The dataset was measured at the EMBL Hamburg Beamline P13 at the PETRA III synchrotron on the DESY campus.
+
Fig. 4. '''Crystals and diffraction pattern.''' Nice crystals were obtained with a medium concentration of alcohol and other supplements (confidential :-]) '''(A).''' X-ray diffraction image of the DacA DAC domain crystals '''(B)'''; the highlighted box is shown enlarged '''(C)'''. The dataset was measured at the EMBL Hamburg Beamline P13 in the PETRA III synchrotron on the DESY campus.
https://static.igem.org/mediawiki/2013/3/36/Goe-dac-fig-5.png
https://static.igem.org/mediawiki/2013/3/36/Goe-dac-fig-5.png
-
Fig. 6.''' Protein structure of DacA.''' (A, B) Ribbon representation of DacA in the ATP bound state. (C, D) Surface structure of DacA and the ATP-binding pocket. (E) Magnified view into the ATP-binding pocket
+
Fig. 6.''' Protein structure of the DacA DAC domain.''' (A, B) Ribbon model of the DAC domain in its ATP-bound state. (C, D) Surface structure of the DAC domain and the ATP-binding pocket. (E) Magnified view into the ATP-binding pocket
 +
<html><object width="420" height="315"><param name="movie" value="//www.youtube.com/v/9BQOEIVsF-Y?hl=zh_CN&amp;version=3&amp;rel=0"></param><param name="allowFullScreen" value="true"></param><param name="allowscriptaccess" value="always"></param><embed src="//www.youtube.com/v/9BQOEIVsF-Y?hl=zh_CN&amp;version=3&amp;rel=0" type="application/x-shockwave-flash" width="420" height="315" allowscriptaccess="always" allowfullscreen="true"></embed></object></html>
'''References'''
'''References'''

Latest revision as of 09:45, 28 October 2013





The beast and its Achilles heel:

 A novel target to fight multi-resistant pathogenic bacteria



DAC Team

Introduction

In order to find a novel target that can be inhibited by new antibacterial compounds, we focused on the recently discovered signaling molecule bis-(3’,5’)-cyclic dimeric adenosine monophosphate (c-di-AMP). c-di-AMP was shown to be an essential second messenger in many important pathogenic Gram-positive bacteria (Witte et al., 2008). Moreover, c-di-AMP has a crucial function in cell wall synthesis and spore formation in Bacillus subtilis (Oppenheimer-Shaanan et al., 2011; Mehne et al., 2013). Interestingly, both lack and excess of c-di-AMP have detrimental effects on cell growth and morphology (Luo and Helmann, 2012; Mehne et al., 2013).

Based on these observations, it makes sense that we take a closer look at the enzyme, the diadenylate cyclase (DAC), which produces c-di-AMP. The DAC CdaA is conserved among several Gram-positive bacteria like B. subtilis, and in the important pathogenic bacteria Streptococcus pneumoniae, Staphylococcus aureus and Listeria monocytogenes (Corrigan and Gründling, 2013). So far, the DAC DisA from B. subtilis has been purified and crystallized (Witte et al., 2008). However, this protein is not present in all Gram-positive bacteria as well as in many pathogenic bacteria. Therefore we decided to concentrate on the DAC CdaA from L. monocytogenes, which is - as mentioned above - well-conserved in all bacteria that need c-di-AMP for growth!

Results and Discussion

Unfortunately, cloning of the full-length gene, encoding the membrane-bound DAC, DacA (Lmo2120) using Escherichia coli failed. Therefore, we decided to clone a truncated dacA gene, that encodes a DAC enzyme, lacking the trans-membrane domain. In this protein the first 100 amino acids are missing. Nevertheless, the resulting truncated part still included the essential DAC domain, and therefore represents one of our favorite BioBricks: [http://parts.igem.org/Part:BBa_K1045003 BBa_K1045003]!

By conducting several experiments, we proved that the truncated DacA protein (BBa_K1045003) was not only active in vivo, but also did it's job in vitro. Moreover, we were able to purify the DAC domain in large scale for determining its 3D structure! Using the structure data, one can now search for chemical compounds that interfere with the activity of the cyclase either by testing with available chemical libraries or by computational modeling. In the following text, the experiments will be explained in more detail. However, if you wish to get even more details, please visit the Parts Registry or our LabBook.

The truncated DacA protein ([http://parts.igem.org/Part:BBa_K1045003 BBa_K1045003]) was extended with an N-terminal Step-tag allowing the rapid purification using the Strep-tag:Streptactin purification system. Synthesis of our protein is driven by a T7 promoter. This promoter is recognized by the T7 polymerase, which is encoded in the genome of the E. coli strain BL21. Synthesis of the T7 polymerase can be controlled by Isopropyl-β-D-thiogalactopyranoside (IPTG). The generated plasmid was then used to transform the E. coli strain BL21, which is a powerful strain for synthesis of recombinant proteins. In contrast to Gram-positive bacteria, the Gram-negative bacterium E. coli does not produce c-di-AMP and growth is not affected by the signaling molecule.

In order to analyze the DAC activity in vivo, DAC production by the E. coli clones was induced by adding IPTG. The cells were then lysed to extract c-di-AMP from the cells.

By performing the SDS PAGE, we could nicely show that the desired protein was well-produced (Fig. 1). Furthermore, the presence of c-di-AMP in the supernatant of the lysed bacteria was confirmed using LC-MS/MS. Thus, we can conclude that the truncated DacA protein codes for an DAC domain that is active in vivo.

Goe-dac-fig-1.png

Fig. 1. Confirmation of DAC production. The SDS PAGE revealed high-level DAC production by three biological replicates. As expected, the DAC domain has a molecular wight of about 20 kDa; Lane 1: Thermo Scientific Page Ruler Plus Prestained Protein Ladder.


DACs catalyze the condensation reaction of two molecules of ATP to a single molecule c-di-AMP, while releasing two pyrophosphate (PP) molecules, consisting of the β-γ-phosphates (P) of each ATP (Fig. 2). In order to analyze the DAC activity in vitro, we performed an assay in which the generation of PP molecules served as an indicator for c-di-AMP production. Among other things such as malachite-green and molybdate, the assay included a PP phosphatase that cleaves the PP molecule into free P molecules. Malachite-green forms a complex with free P molecules and molybdate stabilizes the complex. The product absorption can be measured at a wavelength of 630 nm. With this in vitro assay, the concentration of free P molecules and thus the conversion rate of ATP to c-di-AMP was analyzed.

Our results confirmed that the DAC domain of the DacA enzyme (Lmo2120) is active in the presence of a divalent cation, ATP and a buffer system at pH 8 (in vitro), however, the catalysis rate in vivo appears to be much more efficient.

Fig. 2. c-di-AMP production and degradation. c-di-AMP is produced from two molecules of ATP by DACs and degraded to pApA by phosphodiasterases. (Edited from Corrigan and Gründling, 2013)


Finally, we are coming to the core of our project, the protein structure of the DacA DAC domain! It is very helpful to have the molecular structure of a DAC in hands because it allows to perform in silico experiments. These in silico experiments can lead to the discovery of new antibacterial substance classes, that specifically inhibit DAC activity. The final goal is to use potential antibiotics to treat patients that suffer from infection with pathogenic Gram-positive bacteria.

In order to purify a large amount of this protein, we used our BioBrick [http://partsregistry.org/Part:BBa_K1045003 BBa_K1045003] to produce the N-terminally Strep-tagged DAC domain in E. coli. Expression was confirmed by SDS PAGE and the protein showed a molecular weight of about 20 kDa (Fig. 3). The E. coli strain was grown in a large scale (10 liters), the cells were harvested by centrifugation, lysed and the protein was purified by affinity purification (Fig. 3).

Fig. 3. SDS PAGE showing high-level production and purification of the DAC domain. (A) Lane 1: Thermo Scientific PageRuler Plus Prestained Protein Ladder; NI: Non-induced clone, the cells did not produce the DAC domain and c-di-AMP; I: Induction of dac expression with IPTG, the clone synthesized the DAC domain and c-di-AMP was detected; L: Lysate; FT: Flow-through; the protein eluted in the first elution fraction.

Having dialyzed and concentrated the purified protein, we obtained a protein solution with a concentration of about 10 mg/ml, which was sufficient to perform a crystallization screening. Luckily, we have obtained very nice crystals in the initial crystallization screen (Fig. 4A). In order to find the perfect supplements for growing our crystals, the whole procedure was repeated and the conditions were refined. The crystals yielded an x-ray diffraction pattern, with a resolution of 2,8 Å (Fig. 4B,C). The dataset was measured at the EMBL Hamburg Beamline P13 at the PETRA III synchrotron on the DESY campus, using a PILATUS2 6M X-ray detector (https://www.dectris.com/).

Finally, we were also able to obtain the protein structure (Fig. 5)! The structure shows a globular protein with a distinct ATP-binding cleft. The ribbon model demonstrates the secondary structure composed of α-helices and β-sheets.

Fig. 4. Crystals and diffraction pattern. Nice crystals were obtained with a medium concentration of alcohol and other supplements (confidential :-]) (A). X-ray diffraction image of the DacA DAC domain crystals (B); the highlighted box is shown enlarged (C). The dataset was measured at the EMBL Hamburg Beamline P13 in the PETRA III synchrotron on the DESY campus.

Goe-dac-fig-5.png

Fig. 6. Protein structure of the DacA DAC domain. (A, B) Ribbon model of the DAC domain in its ATP-bound state. (C, D) Surface structure of the DAC domain and the ATP-binding pocket. (E) Magnified view into the ATP-binding pocket

References

Corrigan RM and Gründling A. (2013) Cyclic di-AMP: another second messenger enters the fray. Nat Rev Microbiol. 11(8):513-524

Luo Y and Helmann JD. (2012) Analysis of the role of Bacillus subtilis σ(M) in β-lactam resistance reveals an essential role for c-di-AMP in peptidoglycan homeostasis. Mol Microbiol. 83(3):623-639

Mehne FM, Gunka K, Eilers H, Herzberg C, Kaever V, Stülke J. (2013) Cyclic di-AMP homeostasis in Bacillus subtilis: both lack and high level accumulation of the nucleotide are detrimental for cell growth. J Biol Chem. 288(3):2004-2017

Oppenheimer-Shaanan Y, Wexselblatt E, Katzenhendler J, Yavin E, Ben-Yehuda S. (2011) c-di-AMP reports DNA integrity during sporulation in Bacillus subtilis. EMBO Rep. 12(6):594-601

Witte G, Hartung S, Büttner K, Hopfner KP. (2008) Structural biochemistry of a bacterial checkpoint protein reveals diadenylate cyclase activity regulated by DNA recombination intermediates. Mol Cell. 30(2):167-178

 

Previous Next