Team:Paris Bettencourt/Project/Overview

From 2013.igem.org

(Difference between revisions)
 
(35 intermediate revisions not shown)
Line 1: Line 1:
-
{{:Team:Paris_Bettencourt/header}}
+
{{:Team:Paris_Bettencourt/Wiki}}
 +
{{:Team:Paris_Bettencourt/Menu}}
<html>
<html>
 +
<div style="width:1100px;margin:0 auto;">
 +
<img src="https://static.igem.org/mediawiki/2013/3/3a/PB_logoParis.gif" width="122px" style="position:absolute;top:40px;right:30px;"/>
 +
</div>
 +
 +
  <link href='http://fonts.googleapis.com/css?family=Great+Vibes' rel='stylesheet' type='text/css'>
 +
  <img src="https://static.igem.org/mediawiki/2013/d/da/PB_banneroverviewProjects.png"/>
   <style>
   <style>
   .titletile {
   .titletile {
Line 16: Line 23:
     height:300px;
     height:300px;
     margin-bottom:15px;
     margin-bottom:15px;
 +
  }
 +
  .factstile {
 +
    background:rgb(252,250,229);
 +
    width:100%;
 +
    height:73px;
 +
    margin-bottom:15px;
 +
    font-size:2em;
 +
    line-height:73px;
 +
    text-align:center;
 +
    font-weight:normal;
 +
  }
 +
  .factstile a:hover {
 +
    font-weight:bold;
 +
  }
 +
  .factstile a {
 +
    color: rgb(30,39,43);
   }
   }
   .leftparagraph {
   .leftparagraph {
Line 33: Line 56:
     background:rgb(252,250,229);
     background:rgb(252,250,229);
     overflow:hidden;
     overflow:hidden;
 +
    margin-bottom:15px;
   }
   }
   .projtile h2 {
   .projtile h2 {
Line 48: Line 72:
     margin-right:5%;
     margin-right:5%;
     font-size:17px;
     font-size:17px;
-
  }
 
-
  .tbhuman {
 
-
    background:rgb(252,250,229);
 
-
    width:100%;
 
-
    height:320px;
 
-
    margin-top:15px;
 
   }
   }
   </style>
   </style>
Line 64: Line 82:
     <div class="abstractile">
     <div class="abstractile">
       <div class="leftparagraph">
       <div class="leftparagraph">
 +
<center><img src="https://static.igem.org/mediawiki/2013/d/d1/PB_overview2project.png" width="380"/></center>
       </div>
       </div>
       <div class="rightparagraph">
       <div class="rightparagraph">
       <p>
       <p>
-
  To defeat tuberculosis, we need new biotechnology. Our work will add 4 new tools to the anti-TB medical armamentarium. <b>Detect</b> - A CRISPR-based biosensor delivered by phage and sequence-specific for antibiotic resistance. <b>Target</b> - An E. coli model hosting an essential mycobacterial metabolic pathway that could simplfy drug screening. <b>Infiltrate</b> - A E. coli strain capable of entering infected macrophages and lysing mycobacteria. <b>Sabotage</b> - A non-lytic phage that spreads horizontally in a bacterial population and expresses an siRNA to knock down antibiotic resistance.
+
  To defeat tuberculosis, we need new biotechnology. Our work adds 4 new tools to the anti-TB medical armamentarium. <b>Detect</b> - a CRISPR-based biosensor delivered by phage and sequence-specific for antibiotic resistance. <b>Target</b> - an <i>E. coli</i> model hosting an essential mycobacterial metabolic pathway that could simplify drug screening. <b>Infiltrate</b> - an <i>E. coli</i> strain capable of entering infected macrophages and lysing mycobacteria. <b>Sabotage</b> - a non-lytic phage that spreads horizontally in a bacterial population and expresses an siRNA to knock down antibiotic resistance.
       </p>  
       </p>  
       </div>
       </div>
Line 78: Line 97:
     </a>
     </a>
       <p>
       <p>
 +
Diagnosing antibiotic resistance can improve and accelerate treatment. We propose a phage-delivered, CRISPR-based system that cuts specific DNA sequences and detects the presence of resistance genes due to the resulting DNA damage that is reported with a color output.
 +
       </p>
       </p>
     </div>
     </div>
Line 85: Line 106:
       <center><img src="https://static.igem.org/mediawiki/2013/1/11/PB_TargetIcon.gif" style="height:50px;margin-bottom:5px;"/></center>
       <center><img src="https://static.igem.org/mediawiki/2013/1/11/PB_TargetIcon.gif" style="height:50px;margin-bottom:5px;"/></center>
     </a>
     </a>
-
       <p>
+
       <p>  
 +
 
 +
<i>M. tuberculosis</i> grows slowly and is hard to study in the lab. We have transferred an essential mycobacterial metabolic pathway to <i>E. coli</i>, where it is easy to screen for targeted small-molecule inhibitors.
 +
 
       </p>
       </p>
     </div>
     </div>
Line 94: Line 118:
     </a>
     </a>
       <p>
       <p>
-
A more efficient treatment of TB should contain a drug which rapidly kills mycobacteria and a delivery system for such drug, which could enable the killing of mycobacteria inside the infected macrophages. In our system the rapid drug is Trehalose Dimycolate Hydrolase (TDMH), while the delivery system is LLO carrying strain of <em>E. coli</em>.
+
 
 +
An effective TB therapy must reach mycobacteria inside lung macrophages. In this system, <i>E. coli</i> express listeriolysin O (LLO) to enter the macrophage cytosol and Trehalose Dimycolate Hydrolase (TDMH) to degrade the pathogen's membrane.
 +
 
       </p>
       </p>
     </div>
     </div>
Line 103: Line 129:
     </a>
     </a>
       <p>
       <p>
 +
Totally drug-resistant TB (TDR-TB) is an established and growing problem. We have created a phage vector that delivers an siRNA capable of sabotaging drug resistance and restoring sensitivity. By reducing the fitness burden of our construct, we can promote its spread in a population.
       </p>
       </p>
     </div>
     </div>
     <div style="clear: both;"></div>
     <div style="clear: both;"></div>
-
     <div class="tbhuman">
+
     <div class="factstile">
 +
        <a href="https://2013.igem.org/Team:Paris_Bettencourt/Human_Practice/TB_Facts">TB Facts: what you need to know about TB.</a> 
     </div>
     </div>
-
     <div style="clear: both;"></div>
+
     </a>
   </div>
   </div>
   <div style="clear: both;"></div>
   <div style="clear: both;"></div>
</html>
</html>
{{:Team:Paris_Bettencourt/footer}}
{{:Team:Paris_Bettencourt/footer}}

Latest revision as of 00:27, 29 October 2013

FIGHT TUBERCULOSIS WITH MODERN WEAPONS

To defeat tuberculosis, we need new biotechnology. Our work adds 4 new tools to the anti-TB medical armamentarium. Detect - a CRISPR-based biosensor delivered by phage and sequence-specific for antibiotic resistance. Target - an E. coli model hosting an essential mycobacterial metabolic pathway that could simplify drug screening. Infiltrate - an E. coli strain capable of entering infected macrophages and lysing mycobacteria. Sabotage - a non-lytic phage that spreads horizontally in a bacterial population and expresses an siRNA to knock down antibiotic resistance.

Detect

Diagnosing antibiotic resistance can improve and accelerate treatment. We propose a phage-delivered, CRISPR-based system that cuts specific DNA sequences and detects the presence of resistance genes due to the resulting DNA damage that is reported with a color output.

Target

M. tuberculosis grows slowly and is hard to study in the lab. We have transferred an essential mycobacterial metabolic pathway to E. coli, where it is easy to screen for targeted small-molecule inhibitors.

Infiltrate

An effective TB therapy must reach mycobacteria inside lung macrophages. In this system, E. coli express listeriolysin O (LLO) to enter the macrophage cytosol and Trehalose Dimycolate Hydrolase (TDMH) to degrade the pathogen's membrane.

Sabotage

Totally drug-resistant TB (TDR-TB) is an established and growing problem. We have created a phage vector that delivers an siRNA capable of sabotaging drug resistance and restoring sensitivity. By reducing the fitness burden of our construct, we can promote its spread in a population.

Centre for Research and Interdisciplinarity (CRI)
Faculty of Medicine Cochin Port-Royal, South wing, 2nd floor
Paris Descartes University
24, rue du Faubourg Saint Jacques
75014 Paris, France
+33 1 44 41 25 22/25
team2013@igem-paris.org
Hit Counter by Digits
Copyright (c) 2013 igem.org. All rights reserved.