Team:Hong Kong HKUST/Project/module2

From 2013.igem.org

(Difference between revisions)
 
(48 intermediate revisions not shown)
Line 8: Line 8:
$(this).find("ul").stop().fadeToggle(10);
$(this).find("ul").stop().fadeToggle(10);
});
});
 +
});
 +
</script>
 +
<script>
 +
$(document).ready(function(){
 +
 +
// hide #back-top first
 +
$("#back-top").hide();
 +
 +
// fade in #back-top
 +
$(function () {
 +
$(window).scroll(function () {
 +
if ($(this).scrollTop() > 100) {
 +
$('#back-top').fadeIn();
 +
} else {
 +
$('#back-top').fadeOut();
 +
}
 +
});
 +
 +
// scroll body to 0px on click
 +
$('#back-top a').click(function () {
 +
$('body,html').animate({
 +
scrollTop: 0
 +
}, 800);
 +
return false;
 +
});
 +
});
 +
});
});
</script>   
</script>   
Line 28: Line 55:
</script>
</script>
<style type="text/css">
<style type="text/css">
-
body{background-color:#d5cfbf;width:100%;margin-bottom:20px;min-width:600px;max-width:2000px;height:100%;font: x-small sans-serif;}
+
body{background-color:#d5cfbf;width:100%;margin-bottom:20px;min-width:600px;max-width:2000px;font: x-small sans-serif;}
#menubar  
#menubar  
{background-color:#EEECEC;opacity:0.8;top:-4px;width:360px;height:23px;position:absolute;top:-20px;}
{background-color:#EEECEC;opacity:0.8;top:-4px;width:360px;height:23px;position:absolute;top:-20px;}
Line 42: Line 69:
{visibility:hidden;}
{visibility:hidden;}
#globalWrapper
#globalWrapper
-
{position: relative;font-size:127%;width:100%;margin:0;padding:0;padding-bottom:10px;background-color:#494042;}
+
{position: relative;font-size:127%;width:100%;margin:0;padding:0;padding-bottom:10px;background-color:#494042;height:2750px;}
#content
#content
-
{width: 1000px;border:none;background-color:#ffffff;padding:0px;margin-top:0px;line-height: 1.5em;color: black;}
+
{width: 995px;border:none;background-color:#ffffff;height:2700px;padding:0px;margin-top:0px;line-height: 1.5em;color: black;}
#top-section
#top-section
{height:2px;border:none;background-color:#494042;}
{height:2px;border:none;background-color:#494042;}
#catlinks
#catlinks
-
{border-color:#494042;background-color:#494042;}
+
{display:none;}
#footer-box
#footer-box
{display:none}
{display:none}
Line 55: Line 82:
#cover
#cover
{position:absolute;top:0px;height:168px;width:100%;background:#494042;z-index:-1;}
{position:absolute;top:0px;height:168px;width:100%;background:#494042;z-index:-1;}
-
body, div, dl, dt, dd, ul, ol, li, h1, h2, h3, h4, h5, h6, pre, form, fieldset, p, blockquote, th, td {
+
body, div, dl, dt, dd, ul, ol, li, h1, h4, h6, pre, form, fieldset, p, blockquote, th, td {
margin: 0;
margin: 0;
padding: 0;
padding: 0;
Line 93: Line 120:
{
{
float:left;
float:left;
-
width:16.6667%;
+
width:16.667%;
}
}
ul.first>li>a:link,ul.first>li>a:visited
ul.first>li>a:link,ul.first>li>a:visited
Line 140: Line 167:
top:141px;
top:141px;
width:100%;
width:100%;
 +
z-index:1;
}
}
-
ul.side-nav {
+
#back-top {
 +
position: fixed;
 +
top: 10%;
 +
right: 2%;
 +
z-index:16;
 +
}
 +
#back-top a {
 +
width: 108px;
 +
display: block;
 +
text-align: center;
 +
font: 11px/100% Arial, Helvetica, sans-serif;
 +
text-transform: uppercase;
 +
text-decoration: none;
 +
color: #bbb;
 +
/* background color transition */
 +
-webkit-transition: 1s;
 +
-moz-transition: 1s;
 +
transition: 1s;
 +
}
 +
#back-top a:hover {
 +
color: #ffffff;
 +
}
 +
 
 +
#back-top span {
 +
width: 65px;
 +
height: 60px;
 +
display: block;
 +
margin-bottom: 7px;
 +
background: #ddd url(up-arrow.png) no-repeat center center;
 +
/* rounded corners */
 +
-webkit-border-radius: 15px;
 +
-moz-border-radius: 15px;
 +
border-radius: 15px;
 +
/* background color transition */
 +
-webkit-transition: 1s;
 +
-moz-transition: 1s;
 +
transition: 1s;
 +
}
 +
#back-top a:hover span {
 +
background-color: #777;margin-top:10px;
 +
}
 +
 
 +
ul.side-nav, ul.side-nav1 {
display: block;
display: block;
list-style: none;
list-style: none;
margin: 0;
margin: 0;
-
padding: 17px 0;
+
padding: 17px 0;font-family:"Trebuchet MS", Helvetica, sans-serif;
}
}
ul.side-nav h6 {
ul.side-nav h6 {
margin: 47px 0px 0px;
margin: 47px 0px 0px;
}
}
-
ul.side-nav li.divider {
+
ul.side-nav1 h6 {
 +
margin: 0px 0px 0px;
 +
}
 +
ul.side-nav li.divider, ul.side-nav1 li.divider {
border-top: 1px solid #ddd;
border-top: 1px solid #ddd;
}
}
 +
.two, .row .two {
.two, .row .two {
width: 16.66667%;
width: 16.66667%;
Line 167: Line 241:
width: 83.33333%;
width: 83.33333%;
top:192px;
top:192px;
-
z-index:-2;
+
 
}
}
.column, .columns {
.column, .columns {
Line 178: Line 252:
width: 100%;
width: 100%;
}
}
-
h1, h2, h3, h4, h5, h6 {
+
h1, h2, h4, h5, h6 {
-
font-family: 'Bitter', serif;
+
font-family:"Trebuchet MS", Helvetica, sans-serif;
font-weight: normal;
font-weight: normal;
color: #000;
color: #000;
border-bottom: none;
border-bottom: none;
 +
 +
 +
h3{font-size:18px;font-family:"Trebuchet MS", Helvetica, sans-serif;}
 +
h5{margin-left:15px;}
 +
}
}
div.team-bios-container div.row {
div.team-bios-container div.row {
Line 205: Line 284:
}
}
.nine, .row .nine {
.nine, .row .nine {
-
width: 75%;
+
width: 100%;font-family:"Trebuchet MS", Helvetica, sans-serif;
}
}
[class*="column"] + [class*="column"]:last-child {
[class*="column"] + [class*="column"]:last-child {
Line 213: Line 292:
width: 25%;
width: 25%;
}
}
 +
#construct{margin-left:30px;}
 +
ul li ul, ul li ol {
 +
margin-left: 20px;
 +
margin-bottom: 0;}
</style>
</style>
-
 
+
</head>
<body>
<body>
 +
<p id="back-top" style="display:none;">
 +
<a href="#top"><span><img src="http://515alive.com/theme/img/up-arrow.png" style="width:90%;"><br><br>BACK TO TOP</span></a>
 +
</p>
<a href=https://2013.igem.org/Team:Hong_Kong_HKUST><center><div id="kepala" style="height:121px;width:100%;"><img src="https://static.igem.org/mediawiki/igem.org/c/c7/BANNER1_%281%29.png" style="height:121px;width:100%;align:middle;"></div></center></a>
<a href=https://2013.igem.org/Team:Hong_Kong_HKUST><center><div id="kepala" style="height:121px;width:100%;"><img src="https://static.igem.org/mediawiki/igem.org/c/c7/BANNER1_%281%29.png" style="height:121px;width:100%;align:middle;"></div></center></a>
<div id="cover"></div>
<div id="cover"></div>
Line 228: Line 314:
<li><a href="https://2013.igem.org/Team:Hong_Kong_HKUST/advisors">Advisors</a></li>
<li><a href="https://2013.igem.org/Team:Hong_Kong_HKUST/advisors">Advisors</a></li>
<li><a href="https://2013.igem.org/Team:Hong_Kong_HKUST/instructors">Instructors</a></li>
<li><a href="https://2013.igem.org/Team:Hong_Kong_HKUST/instructors">Instructors</a></li>
 +
<li><a href="https://2013.igem.org/Team:Hong_Kong_HKUST/attribution">Attribution</a></li>
 +
<li><a href="https://2013.igem.org/Team:Hong_Kong_HKUST/acknowledge">Acknowledgement</a></li>
</ul>
</ul>
</li>
</li>
-
<li><a href="https://2013.igem.org/Team:Hong_Kong_HKUST/project">Project</a>
+
<li><a href="https://2013.igem.org/Team:Hong_Kong_HKUST/Project">Project</a>
<ul>
<ul>
<li><a href="https://2013.igem.org/Team:Hong_Kong_HKUST/abstract">Abstract</a></li>
<li><a href="https://2013.igem.org/Team:Hong_Kong_HKUST/abstract">Abstract</a></li>
-
<li><a href="https://2013.igem.org/Team:Hong_Kong_HKUST/modelling">Modelling</a></li>
+
<li><a href="https://2013.igem.org/Team:Hong_Kong_HKUST/modules">Modules Description</a></li>
-
<li><a href="https://2013.igem.org/Team:Hong_Kong_HKUST/characterization">Characterization</a></li>
+
<li><a href="https://2013.igem.org/Team:Hong_Kong_HKUST/data">Data Page</a></li>
<li><a href="https://2013.igem.org/Team:Hong_Kong_HKUST/Parts">Parts</a></li>
<li><a href="https://2013.igem.org/Team:Hong_Kong_HKUST/Parts">Parts</a></li>
-
<li><a href="https://2013.igem.org/Team:Hong_Kong_HKUST/datapage">Data Page</a></li>
+
<li><a href="https://2013.igem.org/Team:Hong_Kong_HKUST/characterization">Characterization</a></li>
-
<li><a href="https://2013.igem.org/Team:Hong_Kong_HKUST/results">Results</a></li>
+
<li><a href="https://2013.igem.org/Team:Hong_Kong_HKUST/results">Result</a></li>
 +
<li><a href="https://2013.igem.org/Team:Hong_Kong_HKUST/future">Future Work</a></li>
</ul>
</ul>
</li>
</li>
Line 244: Line 333:
<li><a href="https://2013.igem.org/Team:Hong_Kong_HKUST/Wetlab">Wetlab</a>
<li><a href="https://2013.igem.org/Team:Hong_Kong_HKUST/Wetlab">Wetlab</a>
<ul>
<ul>
-
<li><a href="https://2013.igem.org/Team:Hong_Kong_HKUST/notebook">notebook</a></li>
+
<li><a href="https://2013.igem.org/Team:Hong_Kong_HKUST/notebook">Notebook</a></li>
-
<li><a href="https://2013.igem.org/Team:Hong_Kong_HKUST/protocols">protocols</a></li>
+
<li><a href="https://2013.igem.org/Team:Hong_Kong_HKUST/protocols">Protocols</a></li>
-
<li><a href="https://2013.igem.org/Team:Hong_Kong_HKUST/safety">safety</a></li>
+
<li><a href="https://2013.igem.org/Team:Hong_Kong_HKUST/safety">Safety</a></li>
 +
 
</ul>
</ul>
</li>
</li>
Line 259: Line 349:
<li><a href="https://2013.igem.org/Team:Hong_Kong_HKUST/hp">Human Practice</a>
<li><a href="https://2013.igem.org/Team:Hong_Kong_HKUST/hp">Human Practice</a>
<ul>
<ul>
-
<li><a href="https://2013.igem.org/Team:Hong_Kong_HKUST/hp/Interviews">Interviews</a></li>
+
<li><a href="https://2013.igem.org/Team:Hong_Kong_HKUST/hp/cp">Country Profile</a></li>
-
<li><a href="https://2013.igem.org/Team:Hong_Kong_HKUST/hp/Presentation">Presentation</a></li>
+
<li><a href="https://2013.igem.org/Team:Hong_Kong_HKUST/hp/blog">Blog</a></li>
-
<li><a href="https://2013.igem.org/Team:Hong_Kong_HKUST/hp/Videos">Videos</a></li>
+
<li><a href="https://2013.igem.org/Team:Hong_Kong_HKUST/hp/interview">Interviews</a></li>
-
<li><a href="https://2013.igem.org/Team:Hong_Kong_HKUST/hp/Article">Article</a></li>
+
<li><a href="https://2013.igem.org/Team:Hong_Kong_HKUST/hp/article/genet">Article</a></li>
 +
<li><a href="https://2013.igem.org/Team:Hong_Kong_HKUST/hp/video">Videos</a></li>
 +
<li><a href="https://2013.igem.org/Team:Hong_Kong_HKUST/hp/presentation">Presentations</a></li>
</ul>
</ul>
</li>
</li>
</ul>
</ul>
 +
</div>
</div>
-
</div>
+
      <div class="row">
-
<div class="row">
+
<div class="two columns">
<div class="two columns">
-
<ul class="side-nav">
+
<br><br>
 +
<ul class="side-nav">
<li>
<li>
-
<h6>Module Two</h6>
+
<h6>Modules</h6>
</li>
</li>
<li class="divider"></li>
<li class="divider"></li>
-
<li>
+
<li>
-
<a href="https://2013.igem.org/Team:Hong_Kong_HKUST/Wetlab">Linkage</a>
+
<a href="https://2013.igem.org/Team:Hong_Kong_HKUST/Project/module4">Glyoxylate Shunt</a>
</li>
</li>
-
<li>
+
<li>
-
<a href="https://2013.igem.org/Team:Hong_Kong_HKUST/Wetlab">Sensing Mechanism</a>
+
<a href="https://2013.igem.org/Team:Hong_Kong_HKUST/Project/module3">Protein Trafficking</a>
</li>
</li>
 +
 +
<li>
 +
FA Sensing Mechanism
<ul>
<ul>
-
<li>
+
-
<a href="https://2012.igem.org/Team:Cornell/project/drylab/modeling/deployment">FADR</a>
+
-
</li>
+
-
<li>
+
-
<a href="https://2012.igem.org/Team:Cornell/project/drylab/modeling/time_response">GRP78</a>
+
-
</li>
+
-
<li>FABP</li>
+
-
</ul>
+
<li>
<li>
-
<a href="https://2012.igem.org/Team:Cornell/project/drylab/components">Experiment Flow</a>
+
<a href=#1>Overview</a>
</li>
</li>
-
<li>
+
<li>
-
Modeling
+
<a href=#2>Four Promoters</a>
-
+
</li>
 +
<li>
 +
<a href=#3>Cell Viability</a>
</li>
</li>
<li>
<li>
-
<a href="https://2012.igem.org/Team:Cornell/project/drylab/status">Characterization</a>
+
<a href=#4>Fatty Acid Quantification</a>
</li>
</li>
 +
<li>
 +
<a href=#5>References</a>
 +
-
</ul>
+
                                </li>
 +
</ul>
 +
</li>
 +
 
 +
 
 +
</ul>
 +
 
</div>
</div>
<div class="ten columns team-bios-container">
<div class="ten columns team-bios-container">
<div class="row" id="ugd-members">
<div class="row" id="ugd-members">
<div class="twelve columns">
<div class="twelve columns">
 +
<br>
<h2 class="centered">Fatty Acid Sensing Mechanism</h2>
<h2 class="centered">Fatty Acid Sensing Mechanism</h2>
</div>
</div>
</div>
</div>
<div class="row">
<div class="row">
-
<div class="nine columns">
+
<div class="nine columns"><p id="1"></p>
-
<h3>Linkage</h3>
+
<h3>Overview</h3>
 +
In 2009, Prof. James Liao's research group at UCLA published their findings that mice expressing synthetic glyoxylate shunt had increased resistance to diet-induced obesity. To engineer this behavior in mice, they introduced glyoxylate shunt genes to mouse liver cells, employing a constitutive promoter for expression of the said genes.
 +
 
 +
Though not demonstrated in mice, we worry that this glyoxylate shunt, when constantly turned on in human cells, could incur a fitness cost by continuing to burn off energy when the environment is not so energy rich. Thus, we are working to put this glyoxylate shunt under regulation by an inducible system, which would allow tunable fatty acid uptake by sensing fatty acid concentrations. Such a system should reduce the risk of energy or fatty acid deficiency when the surrounding fatty acid concentration is not too high.
 +
 
 +
To construct this inducible system, we searched for candidates that could regulate gene expression on the level of transcription while responding to fatty acid levels. Four different fatty acid induced promoters were then investigated, namely:<br>
 +
 
 +
<br>1. Liver Fatty Acid Binding Protein 1 (FABP1) Promoter;
 +
<br>2. Peroxisome Proliferator-Activated Receptor-alpha (PPAR-alpha) Promoter;
 +
<br>3. Glucose Regulated Protein (GRP78) Promoter; and
 +
<br>4. Fatty Acid Metabolism Regulator Protein (FadR) and FadBA Promoter.<br>
 +
 
 +
 
<br>
<br>
-
Recently, UCLA research group has introduced glyoxylate shunt to mammalian liver cell to investigate fatty acid metabolism. In their project, a constitutive promoter was used. In addition to the constitutive glyoxylate shunt, fatty acid sensing mechanism team is trying to introduce an inducible system that allows tunable fatty acid uptake by sensing fatty acid concentrations. It prevents risk of fatty acid deficiency at a low fatty acid concentration.
 
-
<br>
 
-
</div>
 
-
<div class="three columns">
 
-
 
</div>
</div>
</div>
</div>
-
<div class="row">
+
<div class="row">
-
<div class="three columns">
+
<div class="nine columns"><p id="2"></p>
-
+
-
</div>
+
-
<div class="nine columns">
+
-
<h3>Sensing Mechanism</h3>
+
-
<br>
+
-
<h5>Mechanism of fatty acid metabolism regulator protein (FadR)</h5>
+
-
Fatty acid metabolism regular protein (FadR) is a bacterial transcription factor that regulates lipid metabolism of fatty acid biosynthesis and beta-oxidation. The binding of fadR is inhibited by fatty acyl-CoA compounds, which are intermediates of fatty acid degradation. HKUST iGEM group has designed to use this protein in mammalian cell to sense the amount of fatty acid present in the cell.
+
-
<br>
+
-
In the absence of fatty acid, a constitutively expressed fatty acid metabolism regulator protein FadR binds to Pfad promoter (pFadBA) and inhibits the expression of aceA and aceB proteins. In our project, we aim to use this sensing mechanism to regulate the transcription of aceA and aceB genes for glyoxylate shunt. As a regulatory system, when fatty acid is introduced to HepG2 cell, fatty acid is converted into acyl-CoA, which binds to fadR and inhibits repression of Pfad.
+
-
<br>
+
-
In terms of promoter efficiency, the difference in prokaryotic and eukaryotic transcription mechanisms gives this protein low possibility to be expressed in mammalian cell. However, HKUST group plans to investigate the efficiency of prokaryotic transcription factor in eukaryotic system and compare efficiency with other sensing mechanisms, which are believed to be present in mammalian cell. 
+
-
<br>
+
-
<h5>Mechanism of Binding Immunoglobulin Protein, HSPA5 or Glucose Regulated Protein (GRP78)</h5>
+
-
GRP78 (HSPA5) is involved in the folding and assembly of proteins in the endoplasmic reticulum (ER). The level of GRP78 is believed to be strongly correlated with the amount of secretory proteins (e.g. IgG) within the ER, which suggests its key role in monitoring protein transport through the cell.
+
-
<br>
+
-
High concentration of fatty acids disrupts cell homeostasis, causing endoplasmic reticulum stress (ERS) activating the unfolded protein response (UPR) that consists of 3 transmembrane proteins: IRE1 PERK and ATF6. Three signals constitutively activate the GRP78 promoter with the help of other factors, such as NF-Y, ERSF, YY1 and cleaved ATF6, acquired from the normal stress response followed by UPR.
+
-
<br>
+
-
<h5>Mechanism of Fatty Acid Binding Protein (FABP)</h5>
+
-
Fatty acid binding proteins (FABPs) are lipid-binding proteins that regulate fatty acid uptake and transfer between extra-and intracellular membranes. There are 9 different FABPs identified with tissue-specific distribution, including FABP1 in liver. With similar structure of all FABPs,the FABP genes consist of 3 introns and 4 exons.
+
-
<br>
+
-
It is believed that the FABP1 is regulated in response to fatty acid level inside the cell through two mechanisms: 1) Fatty acid in liver cell binds to the PPAR and up-regulates the expression of Fral, the enhancer of FABP gene. 2) Fatty acid stabilizes Fral mRNA and FABP mRNA and increases expression. While the regulation factors of two mechanisms remain unclear, activity of FABP promoter is believed to be corresponding to fatty acid concentration.
+
-
<br>
+
 +
<h3>Biology Behind the Four Fatty Acid Responsive Promoters</h3>
 +
<h3>1. Liver Fatty Acid Binding Protein 1 (FABP1) Promoter</h3>
 +
Fatty acid binding proteins (FABPs) are lipid-binding proteins that regulate fatty acid uptake and transfer between extra-and intracellular membranes. There are 9 different FABPs identified with tissue-specific distribution, including FABP1 in liver. Some, such as Peroxisome Proliferator-Activated Receptor (PPAR), are believed to transport fatty acids from the plasma membrane to intracellular receptors, and as such have a selective cooperation with the receptor to activate gene transcription.
 +
<br><br>
 +
 +
 +
<h3>2. Peroxisome Proliferator-Activated Receptor-alpha (PPAR-alpha) Promoter</h3>
 +
The peroxisome proliferator – activated receptors (PPARs) function s transcription factors to regulate expression of genes. The expression of PPAR-alpha can be up-regulated by increased fatty acid concentration in mammalian liver cells. The promoter of PPAR-alpha has a basal expression level. However, when it is stimulated with an extracellular palmitate concentration of 150uM, the activity of the promoter will increase by over 4 folds within 48 hours. <br><br>
 +
 +
 +
<h3>3. Glucose Regulated Protein (GRP78) Promoter</h3>
 +
GRP78 (HSPA5) is involved in the folding and assembly of proteins in the endoplasmic reticulum (ER). High concentration of fatty acids disrupts cell homeostasis, leading to endoplasmic reticulum stress (ERS). This in turn will activate the unfolded protein response (UPR) that consists of three trans-membrane proteins: IRE1, PERK and ATF6. The signals from these three proteins, when integrated together, will activate the GRP78 promoter. Other factors such as NF-Y, ERSF, YY1, which are normally acquired from the normal stress response followed by UPR, also play a role in activating the GRP78 promoter. <br><br>
 +
 +
 +
<h3>4. Fatty Acid Metabolism Regulator Protein (FadR) and FadBA Promoter</h3>
 +
FadR is a bacterial transcription repressor that regulates lipid metabolism and determines the bi-stable switch between fatty acid biosynthesis and beta-oxidation. The binding of FadR to the operator is inhibited by fatty acyl-CoA compounds, which are intermediates of fatty acid degradation. When the cellular environment is deficient in fatty acids, FadR binds to P<sub><i>fad</sub></i> (promoter of operon <i>fadBA</i>) and shuts down the beta-oxidation pathway while turning on the biosynthesis pathway.
-
</div>
 
</div>
</div>
-
<div class="row">
+
</div>
-
<div class="nine columns">
+
<div class="row">
-
<h3>Experiment Flow</h3>
+
<div class="nine columns"><p id="3"></p>
 +
<h3>Cell Viability</h3>
 +
We are working towards to introducing an inducible system that allows tunable fatty acid uptake regulated by fatty acid concentrations. To test our promoters, fatty acid has to be added in the cell culture medium. It is however known that high fatty acid levels could lead to apoptosis by inducing stress responses. So in order to determine the range of fatty acid concentration suitable for testing, we conducted cell viability tests using MTT assay under different sodium palmitate concentrations. Our desired concentration range should keep at least 60% of cells alive after 24 hours incubation and/or at least 50% alive in 48 hours. 
 +
 
 +
</div>
 +
</div>
 +
<div class="row">
 +
<div class="nine columns"><p id="4"></p>
 +
<h3>Fatty Acid Quantification</h3>
 +
To differentiate between the fatty acid amount added to the medium versus the actual fatty acid amount inside the medium, we investigated two fatty acid quantification methods: 1) Gas Chromatography-Mass Spectrophotometry (GC-MS), and 2) fatty acid quantification kit (Sigma-Aldrich; St. Louis, MO). While we managed to measure the fatty acid quantity in cell culture medium using GC-MS, we were not able to use the fatty acid quantification kit due to time limitations.
<br>
<br>
-
In investigating the promoters, we characterized them by fusing the promoters with a reporter,
+
 
-
Green Fluorescent Protein (GFP), which we cloned from pEGFP-N1 plasmid and place it in  
+
</div>
-
mammalian expression vectors , BBa_J176171 and pEGFP-N1.
+
</div>
 +
<div class="row">
 +
<div class="nine columns"><p id="5"></p>
 +
<h3>References</h3>
 +
<sup>1</sup> Guzman, Carla et al. "The human liver fatty acid binding protein (FABP1) gene is activated by FOXA1 and PPARα; and repressed by C/EBPα: Implications in FABP1 down-regulation in nonalcoholic fatty liver disease." <i>Biochemica et Biophysica Acta (BBA) - Molecular and Cell Biology.</i> 1831.4 (April 2013): 803-818. Web. 23 Sep. 2013. <http://www.sciencedirect.com/science/article/pii/S1388198113000036>.<br><br>
 +
<sup>2</sup> Ann Vogel Hertzel, et al (2000) “the Mammalian Fatty Acid-binding Protein Multigene Family: Molecular and Genetic Insights into Function” Elsevier Science<br><br>
 +
<sup>3</sup> Guor Mour Her, et al. (2003) “In vivo studies of liver-type fatty acid binding protein (L-FABP) gene expression in liver of transgenic zebrafish (Danio rerio)”<br><br>
 +
<sup>4</sup> Ines Pineda Torra  et al. “Characterization of the human PPARalpha promoter: Identification of a functional Nuclear Receptor Response Element.”<br><br>
 +
<sup>5</sup> Christopher D. Swagell et al. (2004) “Expression analysis of a human hepatic cell line in response to palmitate." <i>Biochemical and Biophysical Research Communications.</i><br><br>
 +
<sup>6</sup> Yibin Xu, et al. (2001) “The FadR-DNA Complex. Transcriptional control of fatty acid metabolism in Escherichia Coli.” <i>JBC Papers in Press</i><br><br>
 +
<sup>7</sup> Yuren Wei, et al. (2006) “Saturated fatty acids induce endoplasmic reticulum stress and apoptosis independently of ceramide in liver cells.” <i>Am J Physiol</i><br><br>
 +
<sup>8</sup> Do-Sung Kim, et al. (2007) “Effects of triglyceride on ER stress and insulin resistance” <i>Biochemical and Biophysical Research Communications.</i><br><br>
 +
<sup>9</sup> Mingqing LI, et al. “ATF6 as a Transcription Activator of the Endoplasmic Reticulum Stress Element: Thapsigargin Stress-Induced Changes and Synergistic Interactions with NF-Yand YY1.”<i> Department of Biochemistry and Molecular Biology, and the USC/Norris Comprehensive Cancer Center, Keck School of Medicine of the University of Southern California, Los Angeles.</i><br><br>
 +
<sup>10</sup> <a href="https://2012.igem.org/Team:NTU-Taida">https://2012.igem.org/Team:NTU-Taida</a><br><br>
 +
<sup>11</sup>Life Technologies. (n.d.). Vybrant® mtt cell proliferation assay kit. Retrieved from http://www.lifetechnologies.com/hk/en/home/references/protocols/cell-culture/mtt-assay-protocol/vybrant-mtt-cell-proliferation-assay-kit.html"<br><br>
 +
<sup>12</sup>Sigma-Adrich. (2012). Free fatty acid quantification kit. Retrieved from http://www.sigmaaldrich.com/content/dam/sigma-aldrich/docs/Sigma/Bulletin/1/mak044bul.pdf<br><br>
 +
 
<br>
<br>
-
<h5>FadR and FadBA</h5>
 
-
In terms of FadR protein, we obtained it from 2013 iGEM DNA distribution kit part, known as BBa_K817001. We placed FadR in a mammalian expression vector, BBa_J176171. However, since FadR is a bacterial protein, we did a construction that includes a Kozak sequence as the initiation of translation process in eukaryotic cell and NLS (Nuclear Localisation Sequence) to make it be able to go back to nucleus and regulate FadBA promoter. Kozak sequence and NLS are originally found in the plasmid BBA_J176171, therefore we ligated fadR to J176171 between Kozak and NLS. Followed by restriction digestion of the protein including Kozak sequence, FadR and NLS, we put the construction to pEGFP-N1 plasmid and cut out the eGFP since eGFP is not needed in this part.
 
-
<br>
 
-
So does for FadBA promoter, we obtained it from 2013 iGEM DNA distribution kit, known as BBa_K817002. We extracted it and placed it in BBa_J176171 with an eGFP that we ligated to. The final promoter construction includes the expression vector BBa_J176171, FadBA, and eGFP. Make it to the point: Ex. pFadBA was also obtained from 2013 iGEM Distribution Kit. The promoter was fused with eGFP from pEGFP-N1 and cloned into BBa_J176171 backbone.
 
-
<br>
 
-
The two constructs allow us to investigate the interaction between FadR protein and FadBA promoter in Eukaryotic cells.
 
-
 
-
<br>
 
-
<h5>FABP1</h5>
 
-
FABP1, as a promoter, which originally exists in human liver cell, was extracted from human genomic DNA, the gDNA were extracted from HepG2 cells, then via PCR we cloned the promoter sequence. Then, we ligated it to pEGFP-N1 plasmid by replacing the original promoter pCMV. However, as there are two illegal restriction sites, EcoR1 and Pst1, we conducted mutagenesis to remove them for biobrick submission. The construction includes FABP1 promoter, eGFP both placed in BBa_J176171.
 
-
<br>
 
-
<h5>GRP78</h5>
 
-
GRP78 promoter was obtained from a commercial plasmid (Invivogene,pDRIVE_hGRP78). We did PCR to get the promoter and then ligated it to pEGFP-N1 plasmid by replacing the original promoter pCMV. The promoter contains one illegal restriction site, Xba1, therefore we conduced mutagenesis to remove it for biobrick submission. The final construction includes GRP78 promoter inside pEGFP-N1.
 
-
<br>
 
-
Although GRP78 is not only promoted by Fatty Acids, it also can be induced by any other Endoplasmic Reticulum Stress factor.
 
-
<br>
 
-
After transfecting to mammalian cells, these promoters will be induced by Fatty Acids or its oxidation products, leading to expression of eGFP. By comparing the fluorescnece intensity of eGFP using Fluorescent microscopy, we will be able to quantify their expression and determine the desired sensing mechanism, which is most efficient for Glyoxylate genes expression.
 
-
<h5>Characterization</h5>
 
-
Every promoter works under different Fatty Acid concentrations, therefore we expose the final constructions to different concentration of Fatty Acid, 50, 150, 250, 350 450 and 550 mM then  observed after 3 hrs and 5 hrs after exposure to Fatty Acid. Applying fluorescent microscopy we observed GFP expression and chose the desired promoter.
 
-
</div>
+
</div>
-
<div class="three columns">
+
-
+
-
</div>
+
-
</div>
+
-
<div class="row">
+
-
+
</div>
</div>
</div>
</div>

Latest revision as of 12:41, 28 October 2013


Fatty Acid Sensing Mechanism

Overview

In 2009, Prof. James Liao's research group at UCLA published their findings that mice expressing synthetic glyoxylate shunt had increased resistance to diet-induced obesity. To engineer this behavior in mice, they introduced glyoxylate shunt genes to mouse liver cells, employing a constitutive promoter for expression of the said genes. Though not demonstrated in mice, we worry that this glyoxylate shunt, when constantly turned on in human cells, could incur a fitness cost by continuing to burn off energy when the environment is not so energy rich. Thus, we are working to put this glyoxylate shunt under regulation by an inducible system, which would allow tunable fatty acid uptake by sensing fatty acid concentrations. Such a system should reduce the risk of energy or fatty acid deficiency when the surrounding fatty acid concentration is not too high. To construct this inducible system, we searched for candidates that could regulate gene expression on the level of transcription while responding to fatty acid levels. Four different fatty acid induced promoters were then investigated, namely:

1. Liver Fatty Acid Binding Protein 1 (FABP1) Promoter;
2. Peroxisome Proliferator-Activated Receptor-alpha (PPAR-alpha) Promoter;
3. Glucose Regulated Protein (GRP78) Promoter; and
4. Fatty Acid Metabolism Regulator Protein (FadR) and FadBA Promoter.

Biology Behind the Four Fatty Acid Responsive Promoters

1. Liver Fatty Acid Binding Protein 1 (FABP1) Promoter

Fatty acid binding proteins (FABPs) are lipid-binding proteins that regulate fatty acid uptake and transfer between extra-and intracellular membranes. There are 9 different FABPs identified with tissue-specific distribution, including FABP1 in liver. Some, such as Peroxisome Proliferator-Activated Receptor (PPAR), are believed to transport fatty acids from the plasma membrane to intracellular receptors, and as such have a selective cooperation with the receptor to activate gene transcription.

2. Peroxisome Proliferator-Activated Receptor-alpha (PPAR-alpha) Promoter

The peroxisome proliferator – activated receptors (PPARs) function s transcription factors to regulate expression of genes. The expression of PPAR-alpha can be up-regulated by increased fatty acid concentration in mammalian liver cells. The promoter of PPAR-alpha has a basal expression level. However, when it is stimulated with an extracellular palmitate concentration of 150uM, the activity of the promoter will increase by over 4 folds within 48 hours.

3. Glucose Regulated Protein (GRP78) Promoter

GRP78 (HSPA5) is involved in the folding and assembly of proteins in the endoplasmic reticulum (ER). High concentration of fatty acids disrupts cell homeostasis, leading to endoplasmic reticulum stress (ERS). This in turn will activate the unfolded protein response (UPR) that consists of three trans-membrane proteins: IRE1, PERK and ATF6. The signals from these three proteins, when integrated together, will activate the GRP78 promoter. Other factors such as NF-Y, ERSF, YY1, which are normally acquired from the normal stress response followed by UPR, also play a role in activating the GRP78 promoter.

4. Fatty Acid Metabolism Regulator Protein (FadR) and FadBA Promoter

FadR is a bacterial transcription repressor that regulates lipid metabolism and determines the bi-stable switch between fatty acid biosynthesis and beta-oxidation. The binding of FadR to the operator is inhibited by fatty acyl-CoA compounds, which are intermediates of fatty acid degradation. When the cellular environment is deficient in fatty acids, FadR binds to Pfad (promoter of operon fadBA) and shuts down the beta-oxidation pathway while turning on the biosynthesis pathway.

Cell Viability

We are working towards to introducing an inducible system that allows tunable fatty acid uptake regulated by fatty acid concentrations. To test our promoters, fatty acid has to be added in the cell culture medium. It is however known that high fatty acid levels could lead to apoptosis by inducing stress responses. So in order to determine the range of fatty acid concentration suitable for testing, we conducted cell viability tests using MTT assay under different sodium palmitate concentrations. Our desired concentration range should keep at least 60% of cells alive after 24 hours incubation and/or at least 50% alive in 48 hours.

Fatty Acid Quantification

To differentiate between the fatty acid amount added to the medium versus the actual fatty acid amount inside the medium, we investigated two fatty acid quantification methods: 1) Gas Chromatography-Mass Spectrophotometry (GC-MS), and 2) fatty acid quantification kit (Sigma-Aldrich; St. Louis, MO). While we managed to measure the fatty acid quantity in cell culture medium using GC-MS, we were not able to use the fatty acid quantification kit due to time limitations.

References

1 Guzman, Carla et al. "The human liver fatty acid binding protein (FABP1) gene is activated by FOXA1 and PPARα; and repressed by C/EBPα: Implications in FABP1 down-regulation in nonalcoholic fatty liver disease." Biochemica et Biophysica Acta (BBA) - Molecular and Cell Biology. 1831.4 (April 2013): 803-818. Web. 23 Sep. 2013. .

2 Ann Vogel Hertzel, et al (2000) “the Mammalian Fatty Acid-binding Protein Multigene Family: Molecular and Genetic Insights into Function” Elsevier Science

3 Guor Mour Her, et al. (2003) “In vivo studies of liver-type fatty acid binding protein (L-FABP) gene expression in liver of transgenic zebrafish (Danio rerio)”

4 Ines Pineda Torra et al. “Characterization of the human PPARalpha promoter: Identification of a functional Nuclear Receptor Response Element.”

5 Christopher D. Swagell et al. (2004) “Expression analysis of a human hepatic cell line in response to palmitate." Biochemical and Biophysical Research Communications.

6 Yibin Xu, et al. (2001) “The FadR-DNA Complex. Transcriptional control of fatty acid metabolism in Escherichia Coli.” JBC Papers in Press

7 Yuren Wei, et al. (2006) “Saturated fatty acids induce endoplasmic reticulum stress and apoptosis independently of ceramide in liver cells.” Am J Physiol

8 Do-Sung Kim, et al. (2007) “Effects of triglyceride on ER stress and insulin resistance” Biochemical and Biophysical Research Communications.

9 Mingqing LI, et al. “ATF6 as a Transcription Activator of the Endoplasmic Reticulum Stress Element: Thapsigargin Stress-Induced Changes and Synergistic Interactions with NF-Yand YY1.” Department of Biochemistry and Molecular Biology, and the USC/Norris Comprehensive Cancer Center, Keck School of Medicine of the University of Southern California, Los Angeles.

10 https://2012.igem.org/Team:NTU-Taida

11Life Technologies. (n.d.). Vybrant® mtt cell proliferation assay kit. Retrieved from http://www.lifetechnologies.com/hk/en/home/references/protocols/cell-culture/mtt-assay-protocol/vybrant-mtt-cell-proliferation-assay-kit.html"

12Sigma-Adrich. (2012). Free fatty acid quantification kit. Retrieved from http://www.sigmaaldrich.com/content/dam/sigma-aldrich/docs/Sigma/Bulletin/1/mak044bul.pdf