Team:Peking/Project/BioSensors/XylR

From 2013.igem.org

(Difference between revisions)
(Created page with "<html> <style type="text/css"> - hiding the top section: body{position:absolute; top:0px; width:100%; height:1480px;} #top-section{ height:0px; border:none; width:98...")
 
(197 intermediate revisions not shown)
Line 130: Line 130:
#navigationblock{background-color:#fafaf8; position:fixed; top:0px; width:1200px; height:130px; overflow:hidden; font-family:Calibri, Arial; float:left; margin:0px; padding:0px; z-index:1000; border-bottom:1px solid #d3d7d8;}
#navigationblock{background-color:#fafaf8; position:fixed; top:0px; width:1200px; height:130px; overflow:hidden; font-family:Calibri, Arial; float:left; margin:0px; padding:0px; z-index:1000; border-bottom:1px solid #d3d7d8;}
-
#navbarlogo{position:relative; top:8px; float:left; height:120px;}
+
#navbarlogo{position:absolute; top:0px; left:0px; width:1200px}
-
#navigationbar{position:absolute; left:500px; top:35px; font-size:18px; font-weight:100; color:black;}
+
#navigationbar{position:absolute; left:460px; top:38px; font-size:16px; font-weight:100; color:black;}
-
#navigationbar > li {display:block; list-style-type:none; float:left; width:85px; height:100px; text-align:center; background-color:transparent;}
+
#navigationbar > li {display:block; list-style-type:none; float:left; width:75px; height:30px; text-align:center; }
 +
.Navbar_Item{background-color:transparent;}
.Navbar_Item a {color:black; text-decoration:none;}
.Navbar_Item a {color:black; text-decoration:none;}
-
.Navbar_Item > ul {display:none; width:500px; height:80px; text-align:center; color:black;}
+
.Navbar_Item > ul {display:none; width:900px; height:80px; text-align:center; color:black; z-index:1100; }
-
.Navbar_Item > ul > li {float:left; list-style:none; width:100px; text-align:center; background-color:transparent; position:relative; top:10px;}
+
.Navbar_Item > ul > li {float:left; list-style:none; text-align:center; background-color:transparent; position:relative; top:10px; padding:0 10px;}
-
.Navbar_Item:hover{ border-bottom:1px solid #D00000; color:#D00000}
+
.Navbar_Item:hover{ border-bottom:1px solid #D00000; color:#D00000; background-color:#fafaf8;}
-
.Navbar_Item:hover > ul{ display:block;}
+
.Navbar_Item:hover > ul{zoom:1; display:block;}
-
.Navbar_Item:hover >a {color:#D00000}
+
.Navbar_Item:hover >a {color:#D00000; background-color:#fafaf8;}
-
.Navbar_Item > ul > li:hover {border-bottom:1px solid #D00000; color:#D00000}
+
.Navbar_Item > ul > li:hover {border-bottom:1px solid #D00000; color:#D00000; background-color:#fafaf8;}
.Navbar_Item > ul > li:hover >a {color:#D00000}
.Navbar_Item > ul > li:hover >a {color:#D00000}
 +
.BackgroundofSublist{position:absolute; left:-1000px; width:2000px; height:80px; background-color:#ffffff; opacity:0;}
#Home_Sublist{position:relative; top:0px; left:-50px;}
#Home_Sublist{position:relative; top:0px; left:-50px;}
-
#Team_Sublist{position:relative; top:0px; left:-60px;}
+
#Team_Sublist{position:relative; top:0px; left:-110px;}
-
#Project_Sublist{position:relative; top:0px; left:-200px;}
+
#Project_Sublist{position:relative; top:0px; left:-180px;}
#Model_Sublist{position:relative; top:0px; left:-140px;}
#Model_Sublist{position:relative; top:0px; left:-140px;}
 +
#DataPage_Sublist{position:relative; top:0px; left:-60px;}
#Safety_Sublist{position:relative; top:0px; left:-180px;}
#Safety_Sublist{position:relative; top:0px; left:-180px;}
-
#HumanPractice_Sublist{position:relative; top:0px; left:-220px;}
+
#HumanPractice_Sublist{position:relative; top:0px; left:-470px;}
-
#iGEM_logo{position:relative; top:8px; float:right; height:120px;}
+
#iGEM_logo{position:absolute; top:30px; left:1090px; height:80px;}
/*end navigation bar*/
/*end navigation bar*/
Line 157: Line 160:
#MajorBody{position:absolute; top:0px; left:0px; width:1200px; height:1019px;}
#MajorBody{position:absolute; top:0px; left:0px; width:1200px; height:1019px;}
#ProjectTitle{position:absolute; left:200px; background-color:#ea5930; width:1000px; height:210px; top:150px; z-index:600;}
#ProjectTitle{position:absolute; left:200px; background-color:#ea5930; width:1000px; height:210px; top:150px; z-index:600;}
-
#ProjectName{text-align:center; position:absolute; width:1000px; left:0px; top:40px; border-bottom:0px; color:#FFFFFF; font-size:45px; font-family:calibri,Arial, Helvetica, sans-serif;}
+
#ProjectName{text-align:center; position:absolute; width:1000px; left:0px; top:60px; border-bottom:0px; color:#FFFFFF; font-size:45px; font-family:calibri,Arial, Helvetica, sans-serif;}
#ProjectSubname{text-align:center; position:absolute; width:1000px; left:0px; top:130px; border-bottom:0px; color:#FFFFFF; font-size:19px;  font-family:calibri, Arial, Helvetica, sans-serif;}
#ProjectSubname{text-align:center; position:absolute; width:1000px; left:0px; top:130px; border-bottom:0px; color:#FFFFFF; font-size:19px;  font-family:calibri, Arial, Helvetica, sans-serif;}
-
#LeftNavigation{position:fixed; top:130px; float:left; width:200px; height:100%; background-color:#313131; z-index:900;}
+
#LeftNavigation{position:fixed; top:130px; float:left; width:200px; height:100%; background-color:#313131;z-index:1200;}
-
#SensorsListTitle{position:absolute; top:50px; left:30px; color:#ffffff; font-size:30px; font-family: calibri, arial, helvetica, sans-serif; text-decoration:none; border-bottom:0px;}
+
#SensorsListTitle{position:absolute; top:20px; left:20px; color:#ffffff; font-size:25px; font-family: calibri, arial, helvetica, sans-serif; text-decoration:none; border-bottom:0px;}
 +
#SensorsListTitle a {color:#ffffff; text-decoration:none;}
 +
#SensorsList{position:absolute; top:70px; left:15px; color:#ffffff; font-family: calibri, arial, helvetica, sans-serif;}
 +
#SensorsList > li {display:block; list-style-type:none; width:100px; height:13px; font-size:16px; text-align:left; background-color:transparent;}
 +
.SensorsListItem>a {color:#ffffff; text-decoration:none;}
 +
#SensorsListTitle:hover >a{color:#999999;}
 +
.SensorsListItem:hover >a{color:#999999;}
-
#SensorsList{position:absolute; top:110px; left:0px; color:#ffffff; font-family: calibri, arial, helvetica, sans-serif;}
+
#SensorEditingArea{position:absolute; left:200px; top:360px; height:5610px; width:1000px; background-color:#ffffff;}
-
#SensorsList > li {display:block; list-style-type:none; width:100px; height:18px; font-size:18px; text-align:left; background-color:transparent;}
+
-
#SensorsList a {color:#ffffff; text-decoration:none;}
+
-
 
+
-
 
+
-
#SensorEditingArea{position:absolute; left:200px; top:360px; height:6000px; width:1000px; background-color:#ffffff;}
+
#SensorEditingArea sup{font-size: 0.83em;vertical-align: super;line-height: 0;}
#SensorEditingArea sup{font-size: 0.83em;vertical-align: super;line-height: 0;}
-
 
+
#SensorEditingArea a{color:#ca4321; font-weight:bold;}
Line 177: Line 181:
/*SensorEditingArea*/
/*SensorEditingArea*/
-
#PageTitle{text-align:center; position:absolute; top:40px; left:0px; width:1000px; border-bottom:0px ; color:#535353; font-weight:bold ;font-size:35px;font-family:calibri,arial,helvetica,sans-serif;}
+
#PageTitle{text-align:center; position:absolute; top:40px; left:0px; width:1000px; border-bottom:0px ; color:#535353; font-weight:bold ;font-size:35px;font-family:calibri,arial,helvetica,sans-
-
#OverviewNahR1{text-align:center; position:absolute; top:100px ; left:80px;border-bottom:0px ; color:#ffffff; font-weight:bold ;font-style:Italic;font-size:24px;font-family:calibri,arial,helvetica,sans-serif;background-color:#ca4321; height:30px;width:120px }
+
serif;}
-
#OverviewNahR2{text-align:center; position:absolute; top:3090px ; left:80px;border-bottom:0px ; color:#ffffff; font-weight:bold ;font-style:Italic;font-size:24px;font-family:calibri,arial,helvetica,sans-serif;background-color:#ca4321; height:30px;width:300px }
+
 +
#OverviewXylRoverview{text-align:center; position:absolute; top:100px ; left:80px;border-bottom:0px ; color:#ffffff; font-weight:bold ;font-style:Italic;font-size:24px;font-family:calibri,arial,helvetica,sans-serif;background-color:#ca4321; height:30px;width:150px }
 +
#OverviewXylRmechanism{text-align:center; position:absolute; top:100px ; left:80px;border-bottom:0px ; color:#ffffff; font-weight:bold ;font-style:Italic;font-size:24px;font-family:calibri,arial,helvetica,sans-serif;background-color:#ca4321; height:30px;width:150px }
 +
#OverviewXylRprevious{text-align:center; position:absolute; top:2750px ; left:80px;border-bottom:0px ; color:#ffffff; font-weight:bold ;font-style:Italic;font-size:24px;font-family:calibri,arial,helvetica,sans-serif;background-color:#ca4321; height:30px;width:350px }
-
#ContentNahR1{line-height:25px; text-align:justify; position:absolute; top:150px ; left:80px; width:840px; border-bottom:0px; color:#1b1b1b; font-size:18px;font-family:calibri,arial,helvetica,sans-serif;}
+
#OverviewXylRour{text-align:center; position:absolute; top:3220px ; left:80px;border-bottom:0px ; color:#ffffff; font-weight:bold ;font-style:Italic;font-size:24px;font-family:calibri,arial,helvetica,sans-serif;background-color:#ca4321; height:30px;width:300px }
-
#ContentNahR2{line-height:25px;text-align:justify; position:absolute; top:1000px ; left:80px; width:840px; border-bottom:0px; color:#1b1b1b; font-size:18px;font-family:calibri,arial,helvetica,sans-serif;}
+
-
#ContentNahR3{line-height:25px;text-align:justify; position:absolute; top:1540px ; left:80px; width:840px; border-bottom:0px; color:#1b1b1b; font-size:18px;font-family:calibri,arial,helvetica,sans-serif;}
+
-
#ContentNahR4{line-height:25px;text-align:justify; position:absolute; top:1920px ; left:80px; width:840px; border-bottom:0px; color:#1b1b1b; font-size:18px;font-family:calibri,arial,helvetica,sans-serif;}
+
-
#ContentNahR5{line-height:25px;text-align:justify; position:absolute; top:2650px ; left:80px; width:840px; border-bottom:0px; color:#1b1b1b; font-size:18px;font-family:calibri,arial,helvetica,sans-serif;}
+
-
#ContentNahR6{line-height:25px;text-align:justify; position:absolute; top:3140px ; left:80px; width:840px; border-bottom:0px; color:#1b1b1b; font-size:18px;font-family:calibri,arial,helvetica,sans-serif;}
+
-
#ContentNahR7{line-height:25px;text-align:justify; position:absolute; top:3590px ; left:80px; width:840px; border-bottom:0px; color:#1b1b1b; font-size:18px;font-family:calibri,arial,helvetica,sans-serif;}
+
-
#ContentNahR8{line-height:25px;text-align:justify; position:absolute; top:4280px ; left:80px; width:840px; border-bottom:0px; color:#1b1b1b; font-size:18px;font-family:calibri,arial,helvetica,sans-serif;}
+
-
#ContentNahR9{line-height:25px;text-align:justify; position:absolute; top:4840px ; left:80px; width:840px; border-bottom:0px; color:#1b1b1b; font-size:18px;font-family:calibri,arial,helvetica,sans-serif;}
+
-
#FigureNahR1{line-height:20px; text-align:justify; position:absolute; top:750px ; left:100px; width:800px; border-bottom:0px; color:#1b1b1b; font-size:14px;font-family:arial,calibri,helvetica,sans-serif;}
+
#ContentXylR1{line-height:25px; text-align:justify; position:absolute; top:170px ; left:80px; width:840px; border-bottom:0px; color:#1b1b1b; font-size:18px;font-family:calibri,arial,helvetica,sans-serif;}
-
#FigureNahR2{line-height:20px; text-align:justify; position:absolute; top:1450px ; left:100px; width:800px; border-bottom:0px; color:#1b1b1b; font-size:14px;font-family:arial,calibri,helvetica,sans-serif;}
+
#ContentXylR2{line-height:25px;text-align:justify; position:absolute; top:240px ; left:80px; width:840px; border-bottom:0px; color:#1b1b1b; font-size:18px;font-family:calibri,arial,helvetica,sans-serif;}
-
#FigureNahR3{line-height:20px; text-align:justify; position:absolute; top:1830px ; left:100px; width:800px; border-bottom:0px; color:#1b1b1b; font-size:14px;font-family:arial,calibri,helvetica,sans-serif;}
+
#ContentXylR3{line-height:25px;text-align:justify; position:absolute; top:1285px ; left:80px; width:840px; border-bottom:0px; color:#1b1b1b; font-size:18px;font-family:calibri,arial,helvetica,sans-serif;}
-
#FigureNahR4{line-height:20px; text-align:justify; position:absolute; top:2490px ; left:100px; width:800px; border-bottom:0px; color:#1b1b1b; font-size:14px;font-family:arial,calibri,helvetica,sans-serif;}
+
#ContentXylR4{line-height:25px;text-align:justify; position:absolute; top:1800px ; left:80px; width:840px; border-bottom:0px; color:#1b1b1b; font-size:18px;font-family:calibri,arial,helvetica,sans-serif;}
-
#FigureNahR5{line-height:20px; text-align:justify; position:absolute; top:3520px ; left:100px; width:800px; border-bottom:0px; color:#1b1b1b; font-size:14px;font-family:arial,calibri,helvetica,sans-serif;}
+
#ContentXylR5{line-height:25px;text-align:justify; position:absolute; top:2820px ; left:80px; width:840px; border-bottom:0px; color:#1b1b1b; font-size:18px;font-family:calibri,arial,helvetica,sans-serif;}
-
#FigureNahR6{line-height:20px; text-align:justify; position:absolute; top:4170px ; left:100px; width:800px; border-bottom:0px; color:#1b1b1b; font-size:14px;font-family:arial,calibri,helvetica,sans-serif;}
+
#ContentXylR6{line-height:25px;text-align:justify; position:absolute; top:3270px ; left:80px; width:840px; border-bottom:0px; color:#1b1b1b; font-size:18px;font-family:calibri,arial,helvetica,sans-serif;}
-
#FigureNahR7{line-height:20px; text-align:justify; position:absolute; top:4760px ; left:100px; width:800px; border-bottom:0px; color:#1b1b1b; font-size:14px;font-family:arial,calibri,helvetica,sans-serif;}
+
#ContentXylR7{line-height:25px;text-align:justify; position:absolute; top:4040px ; left:80px; width:840px; border-bottom:0px; color:#1b1b1b; font-size:18px;font-family:calibri,arial,helvetica,sans-serif;}
 +
#ContentXylR8{line-height:25px;text-align:justify; position:absolute; top:4630px ; left:80px; width:840px; border-bottom:0px; color:#1b1b1b; font-size:18px;font-family:calibri,arial,helvetica,sans-serif;}
 +
#ContentXylR9{line-height:25px;text-align:justify; position:absolute; top:4840px ; left:80px; width:840px; border-bottom:0px; color:#1b1b1b; font-size:18px;font-family:calibri,arial,helvetica,sans-serif;}
-
#ReferenceNahR{line-height:20px; text-align:justify; position:absolute; top:5000px ; left:100px; width:800px; border-bottom:0px; color:#1b1b1b; font-size:14px;font-family:arial,calibri,helvetica,sans-serif;}
+
#FigureXylR1{line-height:20px; text-align:justify; position:absolute; top:730px ; left:100px; width:800px; border-bottom:0px; color:#1b1b1b; font-size:14px;font-family:arial,calibri,helvetica,sans-serif;}
 +
#FigureXylR2{line-height:20px; text-align:justify; position:absolute; top:1190px ; left:100px; width:800px; border-bottom:0px; color:#1b1b1b; font-size:14px;font-family:arial,calibri,helvetica,sans-serif;}
 +
#FigureXylR3{line-height:20px; text-align:justify; position:absolute; top:1700px ; left:100px; width:800px; border-bottom:0px; color:#1b1b1b; font-size:14px;font-family:arial,calibri,helvetica,sans-serif;}
 +
#FigureXylR4{line-height:20px; text-align:justify; position:absolute; top:2600px ; left:100px; width:800px; border-bottom:0px; color:#1b1b1b; font-size:14px;font-family:arial,calibri,helvetica,sans-serif;}
 +
#FigureXylR5{line-height:20px; text-align:justify; position:absolute; top:3810px ; left:100px; width:800px; border-bottom:0px; color:#1b1b1b; font-size:14px;font-family:arial,calibri,helvetica,sans-serif;}
 +
#FigureXylR6{line-height:20px; text-align:justify; position:absolute; top:4550px ; left:100px; width:800px; border-bottom:0px; color:#1b1b1b; font-size:14px;font-family:arial,calibri,helvetica,sans-serif;}
 +
#FigureXylR7{line-height:20px; text-align:justify; position:absolute; top:4760px ; left:100px; width:800px; border-bottom:0px; color:#1b1b1b; font-size:14px;font-family:arial,calibri,helvetica,sans-serif;}
-
#NahRFigure1{position:absolute; top:350px; left:225px}}
+
#ReferenceXylR{line-height:20px; text-align:justify; position:absolute; top:4850px ; left:100px; width:800px; border-bottom:0px; color:#1b1b1b; font-size:14px;font-family:arial,calibri,helvetica,sans-serif;}
 +
#XylRfig1{position:absolute; top:460px; width:600px; left:200px; }
 +
#XylRfig2{position:absolute; top:880px; width:800px; left:100px; }
 +
#XylRfig3{position:absolute; top:1580px; width:600px; left:200px; }
 +
#XylRfig4{position:absolute; top:2040px; width:720px; left:140px; }
 +
#XylRfig6{position:absolute; top:3470px; width:800px; left:100px; }
 +
#XylRfig5{position:absolute; top:4170px; width:600px; left:200px; }
</style>
</style>
Line 214: Line 226:
<div id="navigationblock">
<div id="navigationblock">
<img id="navbarlogo" src="https://static.igem.org/mediawiki/igem.org/c/c9/Peking_Logo.jpg"/>
<img id="navbarlogo" src="https://static.igem.org/mediawiki/igem.org/c/c9/Peking_Logo.jpg"/>
 +
       
<ul id="navigationbar">
<ul id="navigationbar">
<li id="PKU_navbar_Home" class="Navbar_Item">
<li id="PKU_navbar_Home" class="Navbar_Item">
-
<a href="https://2013.igem.org/Team:Peking">home</a>
+
                       
 +
<a href="https://2013.igem.org/Team:Peking">Home</a>
<ul id="Home_Sublist" >
<ul id="Home_Sublist" >
-
<li><a>Item1</a></li>
 
-
<li><a>Item2</a></li>
 
-
<li><a>Item3</a></li>
 
</ul>
</ul>
</li>
</li>
<li id="PKU_navbar_Team" class="Navbar_Item">
<li id="PKU_navbar_Team" class="Navbar_Item">
-
<a href="https://2013.igem.org/Team:Peking/Team">team</a>
+
<a href="">Team</a>
<ul id="Team_Sublist">
<ul id="Team_Sublist">
-
<li><a>Item1</a></li>
+
                                <div class="BackgroundofSublist"></div>
-
<li><a>Item2</a></li>
+
<li><a href="https://2013.igem.org/Team:Peking/Team/Members">Members</a></li>
-
<li><a>Item3</a></li>
+
<li><a href="https://2013.igem.org/Team:Peking/Team/Notebook">Notebook</a></li>
 +
<li><a href="https://2013.igem.org/Team:Peking/Team/Attributions">Attributions</a></li>
</ul>
</ul>
</li>
</li>
<li id="PKU_navbar_Project" class="Navbar_Item">
<li id="PKU_navbar_Project" class="Navbar_Item">
-
<a href="https://2013.igem.org/Team:Peking/Project">project</a>
+
<a href="https://2013.igem.org/Team:Peking/Project">Project</a>
<ul id="Project_Sublist">
<ul id="Project_Sublist">
-
<li><a>Existing Biosensors</a></li>
+
                                <div class="BackgroundofSublist"></div>
-
<li><a>Plug-ins & Expansion</a></li>
+
                                <li><a href="https://2013.igem.org/Team:Peking/Project/SensorMining">Biosensor Mining</a></li>
-
<li><a>Band-pass Circuit</a></li>
+
<li><a href="https://2013.igem.org/Team:Peking/Project/BioSensors">Biosensors</a></li>
-
                                 <li><a>Application</a></li>
+
<li><a href="https://2013.igem.org/Team:Peking/Project/Plugins">Adaptors</a></li>
 +
<li><a href="https://2013.igem.org/Team:Peking/Project/BandpassFilter">Band-pass Filter</a></li>
 +
                                 <li><a href="https://2013.igem.org/Team:Peking/Project/Devices">Devices</a></li>
</ul>
</ul>
</li>
</li>
<li id="PKU_navbar_Model" class="Navbar_Item">
<li id="PKU_navbar_Model" class="Navbar_Item">
-
<a href="https://2013.igem.org/Team:Peking/Model">model</a>
+
<a href="">Model</a>
<ul id="Model_Sublist">
<ul id="Model_Sublist">
-
<li><a>Item1</a></li>
+
                                <div class="BackgroundofSublist"></div>
-
<li><a>Item2</a></li>
+
                                <li><a href="https://2013.igem.org/Team:Peking/Model">Band-pass Filter</a></li>
-
<li><a>Item3</a></li>
+
                                <li><a href="https://2013.igem.org/Team:Peking/ModelforFinetuning">Biosensor Fine-tuning</a></li>
 +
</ul>
 +
</li>
 +
                        <li id="PKU_navbar_HumanPractice" class="Navbar_Item" style="width:90px">
 +
<a href="">Data page</a>
 +
<ul id="DataPage_Sublist">
 +
                                <div class="BackgroundofSublist"></div>
 +
                                <li><a href="https://2013.igem.org/Team:Peking/DataPage/Parts">Parts</a></li>
 +
<li><a href="https://2013.igem.org/Team:Peking/DataPage/JudgingCriteria">Judging Criteria</a></li>
 +
 
</ul>
</ul>
</li>
</li>
<li id="PKU_navbar_Safety" class="Navbar_Item">
<li id="PKU_navbar_Safety" class="Navbar_Item">
-
<a href="https://2013.igem.org/Team:Peking/Safety">safety</a>
+
<a href="https://2013.igem.org/Team:Peking/Safety">Safety</a>
<ul id="Safety_Sublist">
<ul id="Safety_Sublist">
-
<li><a>Item1</a></li>
 
-
<li><a>Item2</a></li>
 
-
<li><a>Item3</a></li>
 
</ul>
</ul>
</li>
</li>
<li id="PKU_navbar_HumanPractice" class="Navbar_Item" style="width:120px">
<li id="PKU_navbar_HumanPractice" class="Navbar_Item" style="width:120px">
-
<a href="https://2013.igem.org/Team:Peking/HumanPractice">human practice</a>
+
<a href="https://2013.igem.org/Team:Peking/HumanPractice">Human Practice</a>
-
<ul id="HumanPractice_Sublist">
+
<ul id="HumanPractice_Sublist">
-
<li><a>Item1</a></li>
+
                                <div class="BackgroundofSublist"></div>
-
<li><a>Item2</a></li>
+
                                <li><a href="https://2013.igem.org/Team:Peking/HumanPractice/Questionnaire">Questionnaire Survey</a></li>
-
<li><a>Item3</a></li>
+
<li><a href="https://2013.igem.org/Team:Peking/HumanPractice/FactoryVisit">Visit and Interview</a></li>
 +
                                <li><a href="https://2013.igem.org/Team:Peking/HumanPractice/ModeliGEM">Practical Analysis</a></li>
 +
<li><a href="https://2013.igem.org/Team:Peking/HumanPractice/iGEMWorkshop">Team Communication</a></li>
 +
 
</ul>
</ul>
</li>
</li>
</ul>
</ul>
-
         <a href="https://igem.org/Team_Wikis?year=2013"><img id="iGEM_logo" src="https://static.igem.org/mediawiki/igem.org/4/48/Peking_igemlogo.jpg"/></a>
+
         <a href="https://2013.igem.org/Main_Page"><img id="iGEM_logo" src="https://static.igem.org/mediawiki/igem.org/4/48/Peking_igemlogo.jpg"/></a>
</div>
</div>
<!--end navigationbar-->
<!--end navigationbar-->
-
 
<!--MajorBody-->
<!--MajorBody-->
<div id="MajorBody">   
<div id="MajorBody">   
<div id="ProjectTitle">
<div id="ProjectTitle">
<h1 id="ProjectName">Biosensors</h1>
<h1 id="ProjectName">Biosensors</h1>
-
                <h1 id="ProjectSubname">A FAST, EASY AND ACCURATE METHOD TO DETECT TOXIC AROMATIC COMPOUNDS</h1>
 
                 <img src="https://static.igem.org/mediawiki/igem.org/9/96/Peking2013-biosensortitile-zyh.jpg"/>
                 <img src="https://static.igem.org/mediawiki/igem.org/9/96/Peking2013-biosensortitile-zyh.jpg"/>
</div>
</div>
          
          
-
        <div id="LeftNavigation">
+
      <div id="LeftNavigation">
-
                 <h1 id="SensorsListTitle">Biosensors</h1>
+
                 <h1 id="SensorsListTitle"><a href="https://2013.igem.org/Team:Peking/Project/BioSensors">Biosensors</a></h1>
                 <ul id="SensorsList">
                 <ul id="SensorsList">
-
                <li><a href="#BottomNavigation">CapR</a><li>
+
                    <li class="SensorsListItem" style="font-size:18px; height:15px; width:180px; position:relative; left:-10px;">Individual Biosensors<li>
-
                <li><a>DmpR</a><li>
+
                    <li class="SensorsListItem"><a href="https://2013.igem.org/Team:Peking/Project/BioSensors/XylS">XylS</a><li>
-
                <li><a>HbpR</a><li>
+
                    <li class="SensorsListItem"><a href="https://2013.igem.org/Team:Peking/Project/BioSensors/XylR">XylR</a><li>
-
                <li><a>HcaR</a><li>
+
                    <li class="SensorsListItem"><a href="https://2013.igem.org/Team:Peking/Project/BioSensors/HbpR">HbpR</a><li>
-
                <li><a>HpaR</a><li>
+
                    <li class="SensorsListItem"><a href="https://2013.igem.org/Team:Peking/Project/BioSensors/HcaR">HcaR</a><li>
-
                <li><a>NahR</a><li>
+
                    <li class="SensorsListItem"><a href="https://2013.igem.org/Team:Peking/Project/BioSensors/HpaR">HpaR</a><li>
-
                <li><a>PaaX</a><li>
+
                    <li class="SensorsListItem"><a href="https://2013.igem.org/Team:Peking/Project/BioSensors/HpaR#ContentHpaR4">PaaX</a><li>
-
                <li><a>XylR</a><li>
+
                    <li class="SensorsListItem"><a href="https://2013.igem.org/Team:Peking/Project/BioSensors/DmpR">DmpR</a><li>
-
                <li><a>XylS</a><li>
+
                    <li class="SensorsListItem"><a href="https://2013.igem.org/Team:Peking/Project/BioSensors/NahR">NahR</a><li>
 +
                   
 +
                    <li class="SensorsListItem" style="font-size:18px; height:40px; width:180px; position:relative; left:-10px; top:25px;"><a href="https://2013.igem.org/Team:Peking/Project/BioSensors/MulticomponentAnalysis">Multi-component Analysis</a></li>
                 </ul>
                 </ul>
          
          
Line 296: Line 319:
         <div id="SensorEditingArea">
         <div id="SensorEditingArea">
         <div >
         <div >
-
             <h1 id="PageTitle">NahR</h1>
+
             <h1 id="PageTitle">XylR</h1>
-
            <h2 id="OverviewNahR1"> Overview </h2>
+
-
            <h3 id="OverviewNahR2"> Build Our Own Sensor! </h2>
+
-
<img id="NahRFigure1" src="https://static.igem.org/mediawiki/igem.org/e/e2/Peking2013-NahRFigure1-zyh.jpg"/>
+
            <h3 id="OverviewXylRmechanism"> Mechanism </h3>
 +
            <h4 id="OverviewXylRprevious"> Previous Engineering Efforts </h4>
 +
            <h5 id="OverviewXylRour"> Build Our Own Sensor!</h5>
 +
<img id="XylRfig1" src="https://static.igem.org/mediawiki/2013/e/e7/PekingiGEM2013_XylR_operon.png"/>
 +
<img id="XylRfig2" src="https://static.igem.org/mediawiki/2013/8/8b/PekingiGEM2013_XylR_pathway.png"/>
 +
<img id="XylRfig3" src="https://static.igem.org/mediawiki/2013/0/0a/Peking2013_XylR_domain.png"/>
 +
<img id="XylRfig4" src="https://static.igem.org/mediawiki/2013/b/b8/XylR_mechanism.png"/>
 +
<img id="XylRfig5" src="https://static.igem.org/mediawiki/igem.org/7/7e/Peking2013_XylR_inducers_from_paper.jpg"/>
 +
<img id="XylRfig6" src="https://static.igem.org/mediawiki/2013/9/9d/Peking_2013_XylR_ON-OFF.jpg"/>
 +
<p id="ContentXylR1">
 +
XylR is an intensively studied regulatory protein mined from <i>Pseudomonas putida</i><a href="#ReferenceXylR"><sup>[1]</sup></a>. It responds strongly to toluene, xylene and 4-chlro-toluene, while weakly to 3-methyl benzyl alcohol<a href="#ReferenceXylR"><sup>[1]</sup></a>.
 +
</p>
 +
<p id="ContentXylR2">
 +
XylR activates the <i>Pu</i> promoter to express the "upper pathway" (<i>xylMABC</i>) when exposed to m-xylene (<b>Fig. 1</b>). It also activates the <i>Ps1</i> promoter, thus to produce another transcriptional activator, called XylS, to turn on the expression of the downstream pathway (<i>xylXYZLTEGFJGKIH</i>, the meta-cleavage operon)<a href="#ReferenceXylR"><sup>[1][2]</sup></a>(<B>Fig. 1, Fig. 2</B>). Notably, the entire regulatory network is also controlled by several global regulatory elements, such as IHF. This provides an explanation for the genetic-context-dependent performance of XylR-<i>Pu</i> pair; namely, when expressed in different bacterial species, the regulatory performance of XylR/<i>Pu</i> pair often fails<a href="#ReferenceXylR"><sup>[3]</sup></a>. Therefore,  fine-tuning is probably necessary.
-
<p id="ContentNahR1">
+
<p id="ContentXylR3">
-
The nahR gene originated from the 83 kb naphthalene degradation plasmid NAH7 of Pseudomonas putida encodes a 34 kDa protein which binds to nah and sal promoters to activate transcription of the degradation genes in response to the inducer salicylate. This plasmid encodes enzymes for the metabolism of naphthalene or salicylate as the sole carbon source <B>(Fig. 1a)</B> <sup>[1]</sup>. The 14 genes encoding the enzymes for this metabolism are organized in two operons: nah (nahA-F), encoding six enzymes required for metabolism for naphthalene to salicylate and pyruvate, and sal (nahG-M), encoding eight enzymes which metabolize salicylate to intermediates of TCA cycle <B>(Fig. 1b)</B> <sup>[2]</sup>.
+
The XylR protein consists of four domains (<B>Fig. 3</B>): Domain A is the sensing domain, which will conduct a conformational change upon effector binding. Previous studies showed that Domain A inhibits the DNA binding affinity before conformational change<a href="#ReferenceXylR"><sup>[4][5]</sup></a>. Domain B is a linker domain; mutations in this domain will disrupt the functional coupling and spatial interactions between Domain A and C<a href="#ReferenceXylR"><sup>[6]</sup></a>.
 +
</br></br>
 +
Domain C is the activation domain with ATPase activity that is crucial for XylR dimerization. A subdomain in domain C is assumed to account for the dimerization. Domain D is the DNA binding domain featured by helix-turn-helix motif whose DNA binding is sequence-specific.
</p>
</p>
-
<p id="ContentNahR2">
 
-
Previous work have confirmed that the cloned nah, sal, and nahR genes can be expressed and normally regulated in heterologous host Escherichia coli resembling the situation in Pseudomonas putida [3]. NahR is a member of LysR-type transcriptional factors, which have a conserved N-terminal segment that contains the helix-turn-helix DNA-binding motif. It is sigma70 dependent and functions via contacting the α-unit of RNAP [4]. Mutagenesis experiments also largely facilitated the localization of functional domains in the NahR protein [5,6]. N terminal portion (residues 23-45) accounts for binding DNA. Interestingly, the discovery of C terminal (residues 239-291) mutants unable to bind DNA suggested that the DNA binding requires multimerization through a different protein domain [6]. Gel filtration analysis done by Mark A. Schell showed that the active NahR transcription factor may be a tetramer [5]. Additionally, mutations among residues 140-200 and 207-266 largely affected specificity of inducers, indicating that those residues might serve as a ligand-binding crevice (Fig. 2) [6].
+
<p id="ContentXylR4">
 +
 
 +
XylR is capable of forming tetramer when Domain C binds with ATP <a href="#ReferenceXylR"><sup>[7]</sup></a>. Without ATP, the XylR dimers could only bind to two sequence-specific DNA sites, but won't initiate transcription even exposed to inducers. As a typical σ<sup>54</sup>-dependent transcriptional activator, with the binding of ATP, two dimers of XylR tend to further cooperatively tetramerize, thus to bend the promoter region DNA with the help of integrated host factor (IHF). As a result, the transcription will be launched by the interaction between the XylR tetramer and RNA Polymerase (RNAP). ATP hydrolysis provides energy for this process <a href="#ReferenceXylR"><sup>[8]</sup></a>.  
</p>
</p>
-
<p id="ContentNahR3">
+
<p id="ContentXylR5">
 +
Since one of the criteria of our <a href="https://2013.igem.org/Team:Peking/Project/SensorMining">Sensor Mining</a> for aromatics-sensing transcriptional regulators is "well-studied", it can be expected that some mutants of XylR with novel aromatics-sensing characteristics have been identified. Therefore, we set out to collect the information of XylR. As expected, random mutagenesis on XylR Domain B has been performed in previous studies<a href="#ReferenceXylR"><sup>[9]</sup></a>. One XylR mutant, referred to as XylR28 in ref. [9], carries 4 point mutations in Domain A and Domain B. These point mutations endow XylR with a remarkably improved response to 2.4-DNT and TNT and a reduced response to its natural inducer, m-xylene, indicating the directed evolution may provide possibility to engineer XylR to respond to compounds that it doesn't naturally sense<a href="#ReferenceXylR"><sup>[6]</sup></a>.
 +
<br/> <br/>  
-
As for promoters it regulates, the -82 to -47 region nal and sal promoters is highly homologous, which suggests a consensus NahR-binding site (Fig. 3) [7].
+
As discussed above, the XylR/<i>Pu</i> pair needs fine-tuning. Promoter engineering is considered to be a method. A XylR-controlled <i>Pu</i> promoter shows a high basal level. But the cognate promoter of XylR homolog, DmpR, has a fairly low basal level. We found that XylR could activate the <i>Po</i> promoter of DmpR. A hybrid promoter has been accordingly designed using the binding site of XylR from the <i>Pu</i> promoter. This design has shown that the basal level of the hybrid promoter is low and the XylR binding affinity is high<a href="#ReferenceXylR"><sup>[12]</sup></a>.  
</p>
</p>
-
<p id="ContentNahR4">
+
<p id="ContentXylR6">
-
Several experiments all conformed that NahR tightly binds to DNA <I>in vivo</I> in the presence or absence of salicylate. Either the amount or the affinity of NahR binding to DNA will be affected by salicylate in engineered E. coli and its native host Pseudomonas putida [7]. This fact, along with the evidence from methylation protection experiments, suggested a conformational change in the NahR•DNA complex which results in transcriptional activation (Fig. 4)[8].  
+
We obtained wild type XylR from Biobrick <a href="http://parts.igem.org/Part:BBa_I723021">BBa_I723021</a> designed by iGEM07_Glasgow. To find the optimal performance of biosensor XylR/<I>Pu</I>, we combined Pr-XylR coding sequence with 8 reporter circuits adopting different inducible promoters with Ribosome Binding Sites at different intensity. They are <i>Pu</i> promoter naturally activated by XylR with B0031, B0032 and B0034; <i>Po</i> promoter which is originally regulated by DmpR with B0031, B0032 and B0034; <i>Po'</i> promoter specially designed for XylR with B0031 and B0032. Results showed that the XylR biosensor adopting <i>Pu</i> promoter with RBS B0034 obtained the optimal performance. Then this XylR biosensor was subject to ON-OFF test to determine its detection profile (<b>Fig. 5</b>).  
</p>
</p>
-
<p id="ContentNahR5">
+
<p id="ContentXylR7">As shown in <b>Fig. 5</b>, the performance of XylR is quite different from the previous studies. The conventional inducers for XylR, for instance, TOL, m-Xyl and 3-CITOL, could not elicit any significant responses. It was probably because that these hydrophobic aromatic compounds can vaporize and permeate the sealing film used in our experiment. Regarding this problem, we performed the <a href="https://2013.igem.org/Team:Peking/Team/Notebook/Protocols#Content3">ON/OFF Test</a> using centrifuge tubes, rather than the conventional 96-well microplate.  Results indicated that the XylR biosensor indeed give response to conventional hydrophobic compounds such as TOL and m-Xyl if the vaporization could be prevented (<b>Fig. 6</b>).  
-
Wide Type of NahR responds to its authentic inducer salicylate with the induction ratio over 20 [7]. In the attempt of building different whole-cell biosensors, NahR has been artificially evolved or somehow reshaped by mutagenesis to respond to new signals such as substituted salicylates and substituted benzoates [6,9]. New inducers obtained from mutagenesis are summarized in Table 1.
+
</p>
</p>
-
 
+
<p id="ContentXylR8">
-
<p id="ContentNahR6">
+
In summary, we have successfully constructed the XylR biosensing circuit. The aromatics-sensing profile of XylR biosensor is considerably narrow (<b>Fig. 5b</b>), making it a convenient biosensor for the presence of 4-chloro-benzyl-aldehyde and 3-methyl-aniline. Notably, we are <b>the first iGEM team</b> that demonstrates the ability of XylR to really work as a biosensor; this is probably due to our proper fine-tuning and the method to avoid the vaporization of hydrophobic aromatic compounds.  
-
 
+
-
We ligated BBa_J61051 which contains the constitutively expressed NahR and sal promoter with the reporter gene sfGFP (Fig. 5) via standard assembly. The plasmid verified by Beijing Genomics Institute was transformed into E. coli (TOP10, TransGen Biotech). Single clone of bacteria was picked and grown in rich LB medium added chloromycetin (170 μg/ml) overnight and stored at -80℃ in 20% glycerol, waiting for induction test.
+
</p>
</p>
-
<p id="ContentNahR7">
 
-
On-off test were first carried out for sensor strain NahR following test protocol 1 (hyperlink is needed). NahR strain with no inducer showed low basal expression of sfGFP and 18 compounds showed apparent activation effect with the induction ratios over 20 (Fig. 6). They are listed as follows: SaA, 2-ABzO, 3-MeSaA, 4-MeSaA, 4-ClSaA, 5-ClSaA, AsPR, 2,4,6-TClPhl, 3-IBzO, 2-MeBzO, 3-MeBzO, 4-FBzO, 3-ClBzO, 3-MeOBzO, 3-HSaA, 4-HSaA, 5-ClSaD, 4-ClBzO(For the full name, CHICK HERE).
 
-
Besides salicylate derivatives, our sensor strain specially responded to 2,4,6-TClPhl (a kind of polychlorinated phenol (short for PCP)), which is of significant hazard to water environment and human health.
 
-
</p>
 
-
<p id="ContentNahR8">
+
<!--XylR Figure Illustration-->
-
One step further, NahR strain was subjected to induction experiments with concentration of inducer ranging from 0.03 μM to 1 or 3 mM. Dose-response curves of inducers listed above are obtained according to test protocol 1 (Fig. 7). Hundreds fold of induction can be reached at micro-molar concentration for SaA and its derivatives. Substituted benzoate also functions to activate NahR but with slightly lower induction ratio.
+
        <p id="FigureXylR1">
-
        </p>
 
-
<p id="ContentNahR9">
+
<B>Figure 1.</B> The regulatory network of TOL pathway, including the xyl gene cluster, XylS and XylR. XylR is the master regulator that regulates <i>Pu</i> promoter (controls "upper pathway", <i>xylMABC</i>) and <i>Ps1</i> promoter (controls the expression of XylS, thus to indirectly activate the expression of "downstream pathway“, <i>xylXYZLTEGFJGKIH</i>). The xylene or its derivatives are supposed to be the typical inducers of XylR.
 +
</p>
-
In summary, NahR strain works as a highly-sensitive and robust biosensor for salicylates, benzoate derivatives and water-hazard 2,4,6-TClPhl.
+
<p id="FigureXylR2">
 +
<B>Figure 2.</B> The TOL degradation pathway. The supposed inducers of XylR, toluene and its derivatives, are highlighted in blue.  
 +
</p>
-
        </p>
+
<p id="FigureXylR3">
-
 
+
<B>Figure 3.</B> Schematic organization of XylR protein domains. From N-terminal to C-terminal: the sensor domain A, the linker domain B, the dimerization domain C and the DNA binding domain D.
-
       
+
-
 
+
-
        <p id="FigureNahR1">
+
-
 
+
-
 
+
-
<B>Fig. 1.</B> Degradation pathway of naphthalene in Pseudomonas putida and the gene cluster encoding this function. (a) Gene cluster on the NAH7 plasmid that degrades naphthalene: Naphthalene is transformed into salicylate under the enzymes encoded by the upper operon; salicylate is further degraded to enter TCA cycle via the gene products of the lower operon. Both of the operons are regulated by the transcription factor NahR in response to salicylate, the metabolic intermediate in the pathway. (b) Metabolism of naphthalene encoded by the NAH7 plasmid: Naphthalene is degraded by a series of 13 enzymatic reactions, each catalyzed by a specific nah gene product represented by a capital letter. A through M: A, Naphthalene dioxygenase; B, cis-dihydroxy-naphthalene dioxygenase; D, 2-hydroxychromene-2-carboxylate isomerase; E, 2-hydroxybenzalpyruvate aldolase; F, salicylaldehyde dehydrogenase; G, salicylate hydroxylase; H, catechol 2,3-dioxygenase; I, 2-hydroxymuconate semialdehyde dehydrogenase; J, 2-hydroxymuconate tautomerase; K, 4-oxalcrotonate decarboxylase; L, 2-oxo-4-pentenoate hydratase; M, 2-oxo-4-hydroxypentanoate aldolase.
+
</p>
</p>
-
<p id="FigureNahR2">
+
<p id="FigureXylR4">
 +
<B>Figure 4.</B> The mechanism of σ<sup>54</sup>-dependent transcription activation by XylR. <b>Step1</b>, RNAP recruitment by σ<sup>54</sup>; XylR has formed dimers when binding to DNA.
 +
<b>Step2</b>, formation of XylR tetramer, coupled with ATP hydrolysis. <b>Step3</b>, RNAP ready to initiate transcription. <b>Step4</b>, transcription start with σ<sup>54</sup> released. See the main text for more detailed explanation of transcription activation at the <i>Pu</i> promoter.
-
Fig. 2. Location of the functional domains of NahR transcriptional factor. Domain marked by green near the N terminal accounts for DNA binding, which contains a typical helix-turn-helix motif; red domain functions to bind inducer, while the orange domain is putatively involved in multimerization of NahR in the activation.
 
</p>
</p>
-
<p id="FigureNahR3">
+
<p id="FigureXylR5"><b>Figure 5.</b> The induction ratios of all 78 aromatic compounds obtained from the <a href="https://2013.igem.org/Team:Peking/Team/Notebook/Protocols#Content3">ON/OFF Test</a> using <a href="https://2013.igem.org/Team:Peking/Team/Notebook/Protocols#Content1">Test Protocol 1</a>. (<b>a</b>) XylR biosensor could respond to several aromatics whose induction ratios are not sufficiently high. This result was inconsistent with previous studies <a href="#ReferenceXylR"><sup>[5]</sup></a>, which is probably due to the vaporization of hydrophobic aromatic compounds, as we discussed in the main text. (<b>b</b>) The aromatics-sensing profile of XylR biosensor. The aromatic species that can elicit strong responses of XylR biosensor are highlighted in orange in the aromatics spectrum (For the convenience and clearance of data demonstration, 4-chloro-benzoate, 4-bromo-benzoate and salicylic acid are not included here for they can already be well sensed by other biosensors). The structure formula of the typical inducer(s) is also presented around the spectrum. The induction ratio was calculated by dividing the fluorescence intensity of biosensor exposed to object inducers by the basal fluorescence intensity of the biosensor itself. <a href="https://static.igem.org/mediawiki/igem.org/2/24/Peking2013_Chemicals_V3%2B.pdf">Click Here</a> for the full names of aromatic compounds.
-
Fig. 3. Schematic diagram of the consensus structure of the nahR-regulated promoter nah and sal. Alignment of sal and nah promoter is shown and the consensus forward sequences are marked in color. NahR binding sequence and RNAP binding sequence are shown in green and yellow respectively.
+
-
</p>
+
-
<p id="FigureNahR4">
 
-
Fig. 4. Schematic diagram of the activation of sal (or nah) promoter via NahR in presence of inducer salicylate: 1. The DNA structure of sal promoter: A,B,C and D represent the binding sites for the putative tetramer of NahR; the yellow arrow shows the direction of sal promoter. 2. RNAP and σ70 bind to the sal promoter by recognizing -35 and -10 region; 3. Transcription factor NahR tightly binds to sal promoter and forms a tetramer no matter whether there is salicylate or not; 4. When salicylate is present, NahR•DNA complex undergoes a conformational change. After the hydrolysis of ATP, DNA is opened and transcription is activated.
 
</p>
</p>
-
<p id="FigureNahR5">
+
<p id="FigureXylR6"><b>Figure 6</b>. The induction ratios of hydrophobic aromatics compounds obtained from the <a href="https://2013.igem.org/Team:Peking/Team/Notebook/Protocols#Content3">ON/OFF Test</a> using the new protocol (the same with <a href="https://2013.igem.org/Team:Peking/Team/Notebook/Protocols#Content1">Test Protocol 1</a> except that the experiments were performed in centrifuge tubes to avoid the vaporization).  
-
Fig. 5. Schematic diagram of the plasmid built for sensor strain NahR. iGEM part BBa_J61051 was ligate with reporter sfGFP in the backbone pSB1C3. Promoters are in orange, RBS in light green, CDS in dark blue and terminators in red.
+
-
</p>
+
-
 
+
-
<p id="FigureNahR6">
+
-
Fig. 6. Response of sensor strain NahR to various aromatics. (For the full name of the compounds, CLICK HERE(hyperlink is needed here)). (a) The induction ratio column in the On-Off test. NahR could respond to 18 out of 78 aromatics with the induction ratio over 20. (b) The detection range of sensor strain NahR is profiled in green at the aromatics spectrum. The structure formula of typical inducer is listed around the cycle spectrum, near its chemical formula.
+
</p>
</p>
<p id="FigureNahR7">
<p id="FigureNahR7">
-
Fig. 7. Dose response curves of inducers of NahR. (a) Salicylate and its homologs and derivatives; (b) Benzoate, its derivatives and special inducers like 5-ClSaD and 2,4,6-TClPhl. For the full name of the compounds, CLICK HERE(hyperlink is needed here)).
 
</p>
</p>
        
        
-
<p id="ReferenceNahR">
+
<p id="ReferenceXylR">
<B>Reference:</B>
<B>Reference:</B>
</br>
</br>
-
[1] Dunn, N. W., and I. C. Gunsalus.(1973) Transmissible plasmid encoding early enzymes of naphthalene oxidation in Pseudomonas putida. J. Bacteriol. 114:974-979
+
[1] Abril, M. A., Michan, C., Timmis, K. N., & Ramos, J. (1989). Regulator and enzyme specificities of the TOL plasmid-encoded upper pathway for degradation of aromatic hydrocarbons and expansion
 +
 
 +
of the substrate range of the pathway.Journal of bacteriology, 171(12), 6782-6790.
</br>
</br>
-
[2] M. A. Schell.(1983) Cloning and expression in Escherichia coli of the naphthalene degradation genes from plasmid NAH7. J. Bacteriol. 153(2):822
+
[2] Gerischer, U. (2002). Specific and global regulation of genes associated with the degradation of aromatic compounds in bacteria. Journal of molecular microbiology and biotechnology, 4(2), 111-
 +
 
 +
122.
</br>
</br>
-
[3] M. A. Schell, and P. E. Wender.(1986) Identification of the nahR gene product and nucleotide sequences required for its activation of the sal operon. J. Bacteriol. 116(1):9
+
[3] Valls, M., Silva‐Rocha, R., Cases, I., Muñoz, A., & de Lorenzo, V. (2011). Functional analysis of the integration host factor site of the σ54Pu promoter of Pseudomonas putida by in vivo UV
 +
 
 +
imprinting. Molecular microbiology, 82(3), 591-601.
</br>
</br>
-
[4] Woojun Park, Che Ok Jeon, Eugene L. Madsen.(2002) Interaction of NahR, a LysR-type transcriptional regulator, with the K subunit of RNA polymerase in the naphthalene degrading bacterium, Pseudomonas putida NCIB 9816-4. FEMS Microbiology Letters. 213:159-165
+
[4] Devos, D., Garmendia, J., Lorenzo, V. D., & Valencia, A. (2002). Deciphering the action of aromatic effectors on the prokaryotic enhancer‐binding protein XylR: a structural model of its N‐
 +
 
 +
terminal domain. Environmental microbiology, 4(1), 29-41.
</br>
</br>
-
[5] Mark A. Schell, Pamela H. Brown, and Satanaryana Raju.(1990) Use of Saturation  Mutagenesis to Localize Probable Functional domains in the NahR protein, a LysR-type Transcription Activator. The Journal of Biological Chemistry. 265(7): 3384-3850.
+
[5] Salto, R., Delgado, A., Michán, C., Marqués, S., & Ramos, J. L. (1998). Modulation of the function of the signal receptor domain of XylR, a member of a family of prokaryotic enhancer-like
 +
 
 +
positive regulators. Journal of bacteriology,180(3), 600-604.
</br>
</br>
-
[6] Angel Cebolla, Carolina Sousa, and Vı´ctor de Lorenzo.(1997) Effector Specificity Mutants of the Transcriptional Activator NahR of Naphthalene Degrading Pseudomonas Define Protein Sites Involved in Binding of Aromatic Inducers. The Journal of Biological Chemistry. 272(7):3986-3992
+
[6] Garmendia, J., & De Lorenzo, V. (2000). The role of the interdomain B linker in the activation of the XylR protein of Pseudomonas putida. Molecular microbiology, 38(2), 401-410.
</br>
</br>
-
[7] M. A. Schell, and E. F. Poser.(1989) Demonstration, characterization, and mutational analysis of NahR protein binding to nah and sal promoters. J. Bacteriol. 171(2):837
+
[7] Tropel, D., & Van Der Meer, J. R. (2004). Bacterial transcriptional regulators for degradation pathways of aromatic compounds. Microbiology and Molecular Biology Reviews, 68(3), 474-500.
</br>
</br>
-
[8] Jianzhong Huang and Mark A. Schell.(1991) In vivo interaction of the NahR Transcriptional Activator with its target sequences. The Journal of Biological Chemistry. 266(17):10830-10838
+
[8] Pérez-Martín, J., & de Lorenzo, V. (1996). ATP Binding to the σ< sup> 54</sup>-Dependent Activator XylRTriggers a Protein Multimerization Cycle Catalyzed by UAS DNA. Cell, 86(2), 331-339.
</br>
</br>
-
[9] Hoo Hwi Park, Hae Yong Lee, Woon Ki Lim, Hae Ja Shin. (2005) NahR: Effects of replacements at Asn 169 and Arg 248 on promoter binding and inducer recognition. Archives of Biochemistry and Biophysics. 434:67-74
+
[9] de las Heras, A., Chavarría, M., & de Lorenzo, V. (2011). Association of dnt genes of Burkholderia sp. DNT with the substrate‐blind regulator DntR draws the evolutionary itinerary of 2, 4‐
 +
 
 +
dinitrotoluene biodegradation. Molecular microbiology, 82(2), 287-299.
 +
</br>
 +
[10] de las Heras, A., & de Lorenzo, V. (2011). Cooperative amino acid changes shift the response of the σ54‐dependent regulator XylR from natural m‐xylene towards xenobiotic 2, 4‐
 +
 
 +
dinitrotoluene. Molecular microbiology, 79(5), 1248-1259.
 +
</br>
 +
[11] Garmendia, J., De Las Heras, A., Galvão, T. C., & De Lorenzo, V. (2008). Tracing explosives in soil with transcriptional regulators of Pseudomonas putida evolved for responding to
 +
 
 +
nitrotoluenes. Microbial Biotechnology, 1(3), 236-246.
 +
</br>
 +
[12] Kim, M. N., Park, H. H., Lim, W. K., & Shin, H. J. (2005). Construction and comparison of< i> Escherichia coli</i> whole-cell biosensors capable of detecting aromatic compounds. Journal of  
 +
 
 +
microbiological methods, 60(2), 235-245.
 +
</br>
 +
[13] Garmendia, J., Devos, D., Valencia, A., & De Lorenzo, V. (2001). À la carte transcriptional regulators: unlocking responses of the prokaryotic enhancer‐binding protein XylR to non‐natural
 +
 
 +
effectors. Molecular microbiology, 42(1), 47-59.
</p>
</p>

Latest revision as of 18:18, 28 October 2013

Biosensors

XylR

Mechanism

Previous Engineering Efforts

Build Our Own Sensor!

XylR is an intensively studied regulatory protein mined from Pseudomonas putida[1]. It responds strongly to toluene, xylene and 4-chlro-toluene, while weakly to 3-methyl benzyl alcohol[1].

XylR activates the Pu promoter to express the "upper pathway" (xylMABC) when exposed to m-xylene (Fig. 1). It also activates the Ps1 promoter, thus to produce another transcriptional activator, called XylS, to turn on the expression of the downstream pathway (xylXYZLTEGFJGKIH, the meta-cleavage operon)[1][2](Fig. 1, Fig. 2). Notably, the entire regulatory network is also controlled by several global regulatory elements, such as IHF. This provides an explanation for the genetic-context-dependent performance of XylR-Pu pair; namely, when expressed in different bacterial species, the regulatory performance of XylR/Pu pair often fails[3]. Therefore, fine-tuning is probably necessary.

The XylR protein consists of four domains (Fig. 3): Domain A is the sensing domain, which will conduct a conformational change upon effector binding. Previous studies showed that Domain A inhibits the DNA binding affinity before conformational change[4][5]. Domain B is a linker domain; mutations in this domain will disrupt the functional coupling and spatial interactions between Domain A and C[6].

Domain C is the activation domain with ATPase activity that is crucial for XylR dimerization. A subdomain in domain C is assumed to account for the dimerization. Domain D is the DNA binding domain featured by helix-turn-helix motif whose DNA binding is sequence-specific.

XylR is capable of forming tetramer when Domain C binds with ATP [7]. Without ATP, the XylR dimers could only bind to two sequence-specific DNA sites, but won't initiate transcription even exposed to inducers. As a typical σ54-dependent transcriptional activator, with the binding of ATP, two dimers of XylR tend to further cooperatively tetramerize, thus to bend the promoter region DNA with the help of integrated host factor (IHF). As a result, the transcription will be launched by the interaction between the XylR tetramer and RNA Polymerase (RNAP). ATP hydrolysis provides energy for this process [8].

Since one of the criteria of our Sensor Mining for aromatics-sensing transcriptional regulators is "well-studied", it can be expected that some mutants of XylR with novel aromatics-sensing characteristics have been identified. Therefore, we set out to collect the information of XylR. As expected, random mutagenesis on XylR Domain B has been performed in previous studies[9]. One XylR mutant, referred to as XylR28 in ref. [9], carries 4 point mutations in Domain A and Domain B. These point mutations endow XylR with a remarkably improved response to 2.4-DNT and TNT and a reduced response to its natural inducer, m-xylene, indicating the directed evolution may provide possibility to engineer XylR to respond to compounds that it doesn't naturally sense[6].

As discussed above, the XylR/Pu pair needs fine-tuning. Promoter engineering is considered to be a method. A XylR-controlled Pu promoter shows a high basal level. But the cognate promoter of XylR homolog, DmpR, has a fairly low basal level. We found that XylR could activate the Po promoter of DmpR. A hybrid promoter has been accordingly designed using the binding site of XylR from the Pu promoter. This design has shown that the basal level of the hybrid promoter is low and the XylR binding affinity is high[12].

We obtained wild type XylR from Biobrick BBa_I723021 designed by iGEM07_Glasgow. To find the optimal performance of biosensor XylR/Pu, we combined Pr-XylR coding sequence with 8 reporter circuits adopting different inducible promoters with Ribosome Binding Sites at different intensity. They are Pu promoter naturally activated by XylR with B0031, B0032 and B0034; Po promoter which is originally regulated by DmpR with B0031, B0032 and B0034; Po' promoter specially designed for XylR with B0031 and B0032. Results showed that the XylR biosensor adopting Pu promoter with RBS B0034 obtained the optimal performance. Then this XylR biosensor was subject to ON-OFF test to determine its detection profile (Fig. 5).

As shown in Fig. 5, the performance of XylR is quite different from the previous studies. The conventional inducers for XylR, for instance, TOL, m-Xyl and 3-CITOL, could not elicit any significant responses. It was probably because that these hydrophobic aromatic compounds can vaporize and permeate the sealing film used in our experiment. Regarding this problem, we performed the ON/OFF Test using centrifuge tubes, rather than the conventional 96-well microplate. Results indicated that the XylR biosensor indeed give response to conventional hydrophobic compounds such as TOL and m-Xyl if the vaporization could be prevented (Fig. 6).

In summary, we have successfully constructed the XylR biosensing circuit. The aromatics-sensing profile of XylR biosensor is considerably narrow (Fig. 5b), making it a convenient biosensor for the presence of 4-chloro-benzyl-aldehyde and 3-methyl-aniline. Notably, we are the first iGEM team that demonstrates the ability of XylR to really work as a biosensor; this is probably due to our proper fine-tuning and the method to avoid the vaporization of hydrophobic aromatic compounds.

Figure 1. The regulatory network of TOL pathway, including the xyl gene cluster, XylS and XylR. XylR is the master regulator that regulates Pu promoter (controls "upper pathway", xylMABC) and Ps1 promoter (controls the expression of XylS, thus to indirectly activate the expression of "downstream pathway“, xylXYZLTEGFJGKIH). The xylene or its derivatives are supposed to be the typical inducers of XylR.

Figure 2. The TOL degradation pathway. The supposed inducers of XylR, toluene and its derivatives, are highlighted in blue.

Figure 3. Schematic organization of XylR protein domains. From N-terminal to C-terminal: the sensor domain A, the linker domain B, the dimerization domain C and the DNA binding domain D.

Figure 4. The mechanism of σ54-dependent transcription activation by XylR. Step1, RNAP recruitment by σ54; XylR has formed dimers when binding to DNA. Step2, formation of XylR tetramer, coupled with ATP hydrolysis. Step3, RNAP ready to initiate transcription. Step4, transcription start with σ54 released. See the main text for more detailed explanation of transcription activation at the Pu promoter.

Figure 5. The induction ratios of all 78 aromatic compounds obtained from the ON/OFF Test using Test Protocol 1. (a) XylR biosensor could respond to several aromatics whose induction ratios are not sufficiently high. This result was inconsistent with previous studies [5], which is probably due to the vaporization of hydrophobic aromatic compounds, as we discussed in the main text. (b) The aromatics-sensing profile of XylR biosensor. The aromatic species that can elicit strong responses of XylR biosensor are highlighted in orange in the aromatics spectrum (For the convenience and clearance of data demonstration, 4-chloro-benzoate, 4-bromo-benzoate and salicylic acid are not included here for they can already be well sensed by other biosensors). The structure formula of the typical inducer(s) is also presented around the spectrum. The induction ratio was calculated by dividing the fluorescence intensity of biosensor exposed to object inducers by the basal fluorescence intensity of the biosensor itself. Click Here for the full names of aromatic compounds.

Figure 6. The induction ratios of hydrophobic aromatics compounds obtained from the ON/OFF Test using the new protocol (the same with Test Protocol 1 except that the experiments were performed in centrifuge tubes to avoid the vaporization).

Reference:
[1] Abril, M. A., Michan, C., Timmis, K. N., & Ramos, J. (1989). Regulator and enzyme specificities of the TOL plasmid-encoded upper pathway for degradation of aromatic hydrocarbons and expansion of the substrate range of the pathway.Journal of bacteriology, 171(12), 6782-6790.
[2] Gerischer, U. (2002). Specific and global regulation of genes associated with the degradation of aromatic compounds in bacteria. Journal of molecular microbiology and biotechnology, 4(2), 111- 122.
[3] Valls, M., Silva‐Rocha, R., Cases, I., Muñoz, A., & de Lorenzo, V. (2011). Functional analysis of the integration host factor site of the σ54Pu promoter of Pseudomonas putida by in vivo UV imprinting. Molecular microbiology, 82(3), 591-601.
[4] Devos, D., Garmendia, J., Lorenzo, V. D., & Valencia, A. (2002). Deciphering the action of aromatic effectors on the prokaryotic enhancer‐binding protein XylR: a structural model of its N‐ terminal domain. Environmental microbiology, 4(1), 29-41.
[5] Salto, R., Delgado, A., Michán, C., Marqués, S., & Ramos, J. L. (1998). Modulation of the function of the signal receptor domain of XylR, a member of a family of prokaryotic enhancer-like positive regulators. Journal of bacteriology,180(3), 600-604.
[6] Garmendia, J., & De Lorenzo, V. (2000). The role of the interdomain B linker in the activation of the XylR protein of Pseudomonas putida. Molecular microbiology, 38(2), 401-410.
[7] Tropel, D., & Van Der Meer, J. R. (2004). Bacterial transcriptional regulators for degradation pathways of aromatic compounds. Microbiology and Molecular Biology Reviews, 68(3), 474-500.
[8] Pérez-Martín, J., & de Lorenzo, V. (1996). ATP Binding to the σ< sup> 54-Dependent Activator XylRTriggers a Protein Multimerization Cycle Catalyzed by UAS DNA. Cell, 86(2), 331-339.
[9] de las Heras, A., Chavarría, M., & de Lorenzo, V. (2011). Association of dnt genes of Burkholderia sp. DNT with the substrate‐blind regulator DntR draws the evolutionary itinerary of 2, 4‐ dinitrotoluene biodegradation. Molecular microbiology, 82(2), 287-299.
[10] de las Heras, A., & de Lorenzo, V. (2011). Cooperative amino acid changes shift the response of the σ54‐dependent regulator XylR from natural m‐xylene towards xenobiotic 2, 4‐ dinitrotoluene. Molecular microbiology, 79(5), 1248-1259.
[11] Garmendia, J., De Las Heras, A., Galvão, T. C., & De Lorenzo, V. (2008). Tracing explosives in soil with transcriptional regulators of Pseudomonas putida evolved for responding to nitrotoluenes. Microbial Biotechnology, 1(3), 236-246.
[12] Kim, M. N., Park, H. H., Lim, W. K., & Shin, H. J. (2005). Construction and comparison of< i> Escherichia coli whole-cell biosensors capable of detecting aromatic compounds. Journal of microbiological methods, 60(2), 235-245.
[13] Garmendia, J., Devos, D., Valencia, A., & De Lorenzo, V. (2001). À la carte transcriptional regulators: unlocking responses of the prokaryotic enhancer‐binding protein XylR to non‐natural effectors. Molecular microbiology, 42(1), 47-59.