Team:Peking/Project/BioSensors/HpaR

From 2013.igem.org

(Difference between revisions)
 
(38 intermediate revisions not shown)
Line 139: Line 139:
.Navbar_Item > ul > li {float:left; list-style:none; text-align:center; background-color:transparent; position:relative; top:10px; padding:0 10px;}
.Navbar_Item > ul > li {float:left; list-style:none; text-align:center; background-color:transparent; position:relative; top:10px; padding:0 10px;}
.Navbar_Item:hover{ border-bottom:1px solid #D00000; color:#D00000; background-color:#fafaf8;}
.Navbar_Item:hover{ border-bottom:1px solid #D00000; color:#D00000; background-color:#fafaf8;}
-
.Navbar_Item:hover > ul{ display:block;}
+
.Navbar_Item:hover > ul{zoom:1; display:block;}
.Navbar_Item:hover >a {color:#D00000; background-color:#fafaf8;}
.Navbar_Item:hover >a {color:#D00000; background-color:#fafaf8;}
.Navbar_Item > ul > li:hover {border-bottom:1px solid #D00000; color:#D00000; background-color:#fafaf8;}
.Navbar_Item > ul > li:hover {border-bottom:1px solid #D00000; color:#D00000; background-color:#fafaf8;}
.Navbar_Item > ul > li:hover >a {color:#D00000}
.Navbar_Item > ul > li:hover >a {color:#D00000}
 +
.BackgroundofSublist{position:absolute; left:-1000px; width:2000px; height:80px; background-color:#ffffff; opacity:0;}
Line 151: Line 152:
#DataPage_Sublist{position:relative; top:0px; left:-60px;}
#DataPage_Sublist{position:relative; top:0px; left:-60px;}
#Safety_Sublist{position:relative; top:0px; left:-180px;}
#Safety_Sublist{position:relative; top:0px; left:-180px;}
-
#HumanPractice_Sublist{position:relative; top:0px; left:-420px;}
+
#HumanPractice_Sublist{position:relative; top:0px; left:-470px;}
#iGEM_logo{position:absolute; top:30px; left:1090px; height:80px;}
#iGEM_logo{position:absolute; top:30px; left:1090px; height:80px;}
Line 159: Line 160:
#MajorBody{position:absolute; top:0px; left:0px; width:1200px; height:1019px;}
#MajorBody{position:absolute; top:0px; left:0px; width:1200px; height:1019px;}
#ProjectTitle{position:absolute; left:200px; background-color:#ea5930; width:1000px; height:210px; top:150px; z-index:600;}
#ProjectTitle{position:absolute; left:200px; background-color:#ea5930; width:1000px; height:210px; top:150px; z-index:600;}
-
#ProjectName{text-align:center; position:absolute; width:1000px; left:0px; top:40px; border-bottom:0px; color:#FFFFFF; font-size:45px; font-family:calibri,Arial, Helvetica, sans-serif;}
+
#ProjectName{text-align:center; position:absolute; width:1000px; left:0px; top:60px; border-bottom:0px; color:#FFFFFF; font-size:45px; font-family:calibri,Arial, Helvetica, sans-serif;}
#ProjectSubname{text-align:center; position:absolute; width:1000px; left:0px; top:130px; border-bottom:0px; color:#FFFFFF; font-size:19px;  font-family:calibri, Arial, Helvetica, sans-serif;}
#ProjectSubname{text-align:center; position:absolute; width:1000px; left:0px; top:130px; border-bottom:0px; color:#FFFFFF; font-size:19px;  font-family:calibri, Arial, Helvetica, sans-serif;}
Line 171: Line 172:
.SensorsListItem:hover >a{color:#999999;}
.SensorsListItem:hover >a{color:#999999;}
-
#SensorEditingArea{position:absolute; left:200px; top:360px; height:3910px; width:1000px; background-color:#ffffff;}
+
#SensorEditingArea{position:absolute; left:200px; top:360px; height:3700px; width:1000px; background-color:#ffffff;}
#SensorEditingArea sup{font-size: 0.83em;vertical-align: super;line-height: 0;}
#SensorEditingArea sup{font-size: 0.83em;vertical-align: super;line-height: 0;}
 +
#SensorEditingArea a{color:#ca4321; font-weight:bold;}
Line 185: Line 187:
#PageSubtitle3{text-align:center; position:absolute; top:100px ; left:80px;border-bottom:0px ; color:#ffffff; font-weight:bold ;font-style:Italic;font-size:24px;font-family:calibri,arial,helvetica,sans-serif;background-color:#ca4321; height:40px;width:150px;line-height:40px; }
#PageSubtitle3{text-align:center; position:absolute; top:100px ; left:80px;border-bottom:0px ; color:#ffffff; font-weight:bold ;font-style:Italic;font-size:24px;font-family:calibri,arial,helvetica,sans-serif;background-color:#ca4321; height:40px;width:150px;line-height:40px; }
-
#PageSubtitle4{text-align:center; position:absolute; top:1630px ; left:80px;border-bottom:0px ; color:#ffffff; font-weight:bold ;font-style:Italic;font-size:24px;font-family:calibri,arial,helvetica,sans-serif;background-color:#ca4321; height:40px;width:250px;line-height:40px; }
+
#PageSubtitle4{text-align:center; position:absolute; top:1630px ; left:80px;border-bottom:0px ; color:#ffffff; font-weight:bold ;font-style:Italic;font-size:24px;font-family:calibri,arial,helvetica,sans-serif;background-color:#ca4321; height:40px;width:350px;line-height:40px; }
#PageSubtitle5{text-align:center; position:absolute; top:2050px ; left:80px;border-bottom:0px ; color:#ffffff; font-weight:bold ;font-style:Italic;font-size:24px;font-family:calibri,arial,helvetica,sans-serif;background-color:#ca4321; height:40px;width:150px ;line-height:40px;}
#PageSubtitle5{text-align:center; position:absolute; top:2050px ; left:80px;border-bottom:0px ; color:#ffffff; font-weight:bold ;font-style:Italic;font-size:24px;font-family:calibri,arial,helvetica,sans-serif;background-color:#ca4321; height:40px;width:150px ;line-height:40px;}
-
#PageSubtitle6{text-align:center; position:absolute; top:3160px ; left:80px;border-bottom:0px ; color:#ffffff; font-weight:bold ;font-style:Italic;font-size:24px;font-family:calibri,arial,helvetica,sans-serif;background-color:#ca4321; height:40px;width:250px ;line-height:40px;}
+
#PageSubtitle6{text-align:center; position:absolute; top:3160px ; left:80px;border-bottom:0px ; color:#ffffff; font-weight:bold ;font-style:Italic;font-size:24px;font-family:calibri,arial,helvetica,sans-serif;background-color:#ca4321; height:40px;width:350px ;line-height:40px;}
Line 203: Line 205:
-
#Figure3{line-height:20px; text-align:justify; position:absolute; top:564px ; left:100px; width:800px; border-bottom:0px; color:#1b1b1b; font-size:14px;font-family:arial,calibri,helvetica,sans-serif;}
+
#Figure3{line-height:20px; text-align:justify; position:absolute; top:574px ; left:100px; width:800px; border-bottom:0px; color:#1b1b1b; font-size:14px;font-family:arial,calibri,helvetica,sans-serif;}
#Figure4{line-height:20px; text-align:justify; position:absolute; top:1025px ; left:100px; width:800px; border-bottom:0px; color:#1b1b1b; font-size:14px;font-family:arial,calibri,helvetica,sans-serif;}
#Figure4{line-height:20px; text-align:justify; position:absolute; top:1025px ; left:100px; width:800px; border-bottom:0px; color:#1b1b1b; font-size:14px;font-family:arial,calibri,helvetica,sans-serif;}
#Figure5{line-height:20px; text-align:justify; position:absolute; top:1530px ; left:100px; width:800px; border-bottom:0px; color:#1b1b1b; font-size:14px;font-family:arial,calibri,helvetica,sans-serif;}
#Figure5{line-height:20px; text-align:justify; position:absolute; top:1530px ; left:100px; width:800px; border-bottom:0px; color:#1b1b1b; font-size:14px;font-family:arial,calibri,helvetica,sans-serif;}
Line 212: Line 214:
-
#FigurePic3{position:absolute; top:420px; width:700px; left:150px; }
+
#FigurePic3{position:absolute; top:440px; width:700px; left:150px; }
-
#FigurePic4{position:absolute; top:830px; width:700px; left:150px; }
+
#FigurePic4{position:absolute; top:860px; width:700px; left:150px; }
#FigurePic5{position:absolute; top:1310px; width:700px; left:150px; }
#FigurePic5{position:absolute; top:1310px; width:700px; left:150px; }
-
#FigurePic6{position:absolute; top:2350px; width:450px; left:255px; }
+
#FigurePic6{position:absolute; top:2360px; width:450px; left:255px; }
#FigurePic7{position:absolute; top:2670px; width:700px; left:150px; }
#FigurePic7{position:absolute; top:2670px; width:700px; left:150px; }
Line 231: Line 233:
<ul id="navigationbar">
<ul id="navigationbar">
<li id="PKU_navbar_Home" class="Navbar_Item">
<li id="PKU_navbar_Home" class="Navbar_Item">
 +
                       
<a href="https://2013.igem.org/Team:Peking">Home</a>
<a href="https://2013.igem.org/Team:Peking">Home</a>
<ul id="Home_Sublist" >
<ul id="Home_Sublist" >
Line 236: Line 239:
</li>
</li>
<li id="PKU_navbar_Team" class="Navbar_Item">
<li id="PKU_navbar_Team" class="Navbar_Item">
-
<a >Team</a>
+
<a href="">Team</a>
<ul id="Team_Sublist">
<ul id="Team_Sublist">
 +
                                <div class="BackgroundofSublist"></div>
<li><a href="https://2013.igem.org/Team:Peking/Team/Members">Members</a></li>
<li><a href="https://2013.igem.org/Team:Peking/Team/Members">Members</a></li>
<li><a href="https://2013.igem.org/Team:Peking/Team/Notebook">Notebook</a></li>
<li><a href="https://2013.igem.org/Team:Peking/Team/Notebook">Notebook</a></li>
Line 246: Line 250:
<a href="https://2013.igem.org/Team:Peking/Project">Project</a>
<a href="https://2013.igem.org/Team:Peking/Project">Project</a>
<ul id="Project_Sublist">
<ul id="Project_Sublist">
 +
                                <div class="BackgroundofSublist"></div>
                                 <li><a href="https://2013.igem.org/Team:Peking/Project/SensorMining">Biosensor Mining</a></li>
                                 <li><a href="https://2013.igem.org/Team:Peking/Project/SensorMining">Biosensor Mining</a></li>
<li><a href="https://2013.igem.org/Team:Peking/Project/BioSensors">Biosensors</a></li>
<li><a href="https://2013.igem.org/Team:Peking/Project/BioSensors">Biosensors</a></li>
<li><a href="https://2013.igem.org/Team:Peking/Project/Plugins">Adaptors</a></li>
<li><a href="https://2013.igem.org/Team:Peking/Project/Plugins">Adaptors</a></li>
<li><a href="https://2013.igem.org/Team:Peking/Project/BandpassFilter">Band-pass Filter</a></li>
<li><a href="https://2013.igem.org/Team:Peking/Project/BandpassFilter">Band-pass Filter</a></li>
 +
                                <li><a href="https://2013.igem.org/Team:Peking/Project/Devices">Devices</a></li>
</ul>
</ul>
</li>
</li>
<li id="PKU_navbar_Model" class="Navbar_Item">
<li id="PKU_navbar_Model" class="Navbar_Item">
-
<a href="https://2013.igem.org/Team:Peking/Model">Model</a>
+
<a href="">Model</a>
<ul id="Model_Sublist">
<ul id="Model_Sublist">
 +
                                <div class="BackgroundofSublist"></div>
 +
                                <li><a href="https://2013.igem.org/Team:Peking/Model">Band-pass Filter</a></li>
 +
                                <li><a href="https://2013.igem.org/Team:Peking/ModelforFinetuning">Biosensor Fine-tuning</a></li>
</ul>
</ul>
</li>
</li>
                         <li id="PKU_navbar_HumanPractice" class="Navbar_Item" style="width:90px">
                         <li id="PKU_navbar_HumanPractice" class="Navbar_Item" style="width:90px">
-
<a >Data page</a>
+
<a href="">Data page</a>
-
<ul id="DataPage_Sublist">
+
<ul id="DataPage_Sublist">
 +
                                <div class="BackgroundofSublist"></div>
                                 <li><a href="https://2013.igem.org/Team:Peking/DataPage/Parts">Parts</a></li>
                                 <li><a href="https://2013.igem.org/Team:Peking/DataPage/Parts">Parts</a></li>
<li><a href="https://2013.igem.org/Team:Peking/DataPage/JudgingCriteria">Judging Criteria</a></li>
<li><a href="https://2013.igem.org/Team:Peking/DataPage/JudgingCriteria">Judging Criteria</a></li>
Line 272: Line 282:
<li id="PKU_navbar_HumanPractice" class="Navbar_Item" style="width:120px">
<li id="PKU_navbar_HumanPractice" class="Navbar_Item" style="width:120px">
<a href="https://2013.igem.org/Team:Peking/HumanPractice">Human Practice</a>
<a href="https://2013.igem.org/Team:Peking/HumanPractice">Human Practice</a>
-
<ul id="HumanPractice_Sublist">
+
<ul id="HumanPractice_Sublist">
-
                                 <li><a href="https://2013.igem.org/Team:Peking/HumanPractice/Questionnaire">Questionnaire</a></li>
+
                                <div class="BackgroundofSublist"></div>
-
<li><a href="https://2013.igem.org/Team:Peking/HumanPractice/FactoryVisit">Factory Visit</a></li>
+
                                 <li><a href="https://2013.igem.org/Team:Peking/HumanPractice/Questionnaire">Questionnaire Survey</a></li>
-
<li><a href="https://2013.igem.org/Team:Peking/HumanPractice/ModeliGEM">Practical Analysis</a></li>
+
<li><a href="https://2013.igem.org/Team:Peking/HumanPractice/FactoryVisit">Visit and Interview</a></li>
-
                                <li><a href="https://2013.igem.org/Team:Peking/HumanPractice/iGEMWorkshop">Team Coummunication</a></li>
+
                                <li><a href="https://2013.igem.org/Team:Peking/HumanPractice/ModeliGEM">Practical Analysis</a></li>
 +
<li><a href="https://2013.igem.org/Team:Peking/HumanPractice/iGEMWorkshop">Team Communication</a></li>
 +
 
</ul>
</ul>
</li>
</li>
</ul>
</ul>
-
         <a href="https://igem.org/Team_Wikis?year=2013"><img id="iGEM_logo" src="https://static.igem.org/mediawiki/igem.org/4/48/Peking_igemlogo.jpg"/></a>
+
         <a href="https://2013.igem.org/Main_Page"><img id="iGEM_logo" src="https://static.igem.org/mediawiki/igem.org/4/48/Peking_igemlogo.jpg"/></a>
</div>
</div>
<!--end navigationbar-->
<!--end navigationbar-->
Line 331: Line 343:
<p id="ContentHpaR1">
<p id="ContentHpaR1">
-
HpaR is of 17,235 Da (149 amino acid) that belongs to MarR family <SUP>[4]</SUP>. It performs as a repressor of the hpa cluster consisting of hpaGEDFHI genes (<B>Fig.4</B>), which participates in the catabolic pathway of 4-hydroxyphenylacetic acid (4HPAA) (<B>Fig.3</B>). HpaR derepress the downstream genes when contacting with ligands, including 4HPAA, 3-hydroxyphenylacetic acid (3HPAA) and 3, 4-dihydroxyphenylacetic acid (3,4-DHPAA).  
+
HpaR is of 17,235 Da (149 amino acid) that belongs to <I>MarR</I> family <a href="#Reference"><SUP>[1]</SUP></a>. It functions as a repressor of the <I>hpa</I> cluster consisting of <I>hpaGEDFHI</I> genes (<B>Fig. 2</B>), which participate in the catabolic pathway of 4-hydroxyphenylacetic acid (4HPAA) (<B>Fig. 1</B>). HpaR de-represses downstream genes when exposed to ligands such as 4HPAA, 3-hydroxyphenylacetic acid (3HPAA) and 3, 4-dihydroxyphenylacetic acid (3,4-DHPAA).  
<br/><br/>
<br/><br/>
-
hpa cluster consists of three operons. The regulator gene, hpaR, is transcribed in the divert direction to other genes under PR promoter. The adjacent promoter, PG, initiates the transcription of the functional hpaGEDFHI operon. PR and PG are both regulated by HpaR and located in the intergenic region between the hpaR and hpaG (<B>Fig.4</B>). There are two HpaR binding sites, OPR1 and OPR2, belonging to PR and PG respectively. Each binding site contains palindrome sequence  
+
<I>hpa</I> cluster consists of three operons. The regulator gene, <I>hpaR</I>, is driven by <I>Pr</I> promoter in the direction reverse to other genes. The adjacent promoter, <I>Pg</I>, initiates the transcription of the functional <I>hpaGEDFHI</I> operon. <I>Pr</I> and <I>Pg</I> are both regulated by HpaR and located in the intergenic region between <I>hpaR</I> and <I>hpaG</I> (<B>Fig. 2</B>). There are two HpaR binding sites, <I>OPR1</I> and <I>OPR2</I>, belonging to <I>Pr</I> and <I>Pg</I> respectively. HpaR dimer contacts with a palindrome sequence within the binding site in the absence of ligands and inhibit the transcription initiation.
</p>
</p>
<p id="ContentHpaR2">
<p id="ContentHpaR2">
-
which contacts with HpaR dimer in absence of ligand, inhibiting the transcription initiation. OPR1 is centered in the +2 site of PG. OPR2, however, is centered in the +40 site downstream of PR. It is hypothesized that HpaR binding to OPR1 inhibits the formation of open complex while binding to OPR2 blocks the elongation step (<B>Fig.5</B>).  
+
 
 +
<I>OPR1</I> is centered in the +2 site of <I>Pg</I> while <I>OPR2</I> is centered in the +40 site downstream of <I>Pr</I>. It is hypothesized that HpaR's binding to <I>OPR1</I> inhibits the formation of open complex whereas binding to <I>OPR2</I> blocks transcription elongation(<B>Fig. 3</B>).  
<br/><br/>
<br/><br/>
-
Interestingly, based on the gel retardation assays, most of the HpaR dimer still contact with the OPR1 in the presence of the ligand, which recruits the RNAP and form open-complex. In this way, HpaR can be regarded as an activator.  
+
Interestingly, based on the gel retardation assays, most of the HpaR dimer still contacts with the <I>OPR1</I> in the presence of the ligands, which recruits RNAP and forms open-complex. In this way, HpaR can also be regarded as an activator.  
-
 
+
</p>
</p>
Line 346: Line 358:
<p id="ContentHpaR3">
<p id="ContentHpaR3">
-
The two binding site, OPR1 and OPR2, perform obvious synergistic effect, i.e., binding with PG obviously improve the affinity of HpaR to PR. It is hypothesized that HpaR dimer binding to one OPR get dimerized again and generates a repression loop, similar with the AraC and PBAD. Contact with ligand disrupts the dimerization of dimer and consequently initiates transcription of the hpaGEDFHI cluster. <SUP>[4]</SUP>  
+
The two binding sites, <I>OPR1</I> and <I>OPR2</I>, exhibit obvious cooperative effect, i.e., binding with <I>Pg</I> significantly improves the affinity of HpaR to <I>Pr</I>. It is hypothesized that the two HpaR dimers, when binding to two OPR sites respectively, will dimerize again and generate repression loops, similar with the mechanism of AraC . Binding of ligands disrupts the dimer and consequently initiates transcription of the <I>hpaGEDFHI</I> cluster <a href="#Reference"><SUP>[1]</SUP></a>.
</p>
</p>
<p id="ContentHpaR4">
<p id="ContentHpaR4">
-
  We obtained hpaR coding sequence via PCR and constructed Pg/HpaR expression system. Pc promoter J23106 is selected to initiate the transcription of hpaR. However, we haven`t got the obvious induction ratio. It is hypothesized that several overall-controlling sites are located in the promoter, i.e., IHF and CRP. The main function of the pathway is to use the complementary carbon source in the environment, so bacteria will control strictly the expression of the relative genes in rich condition.
+
  We obtained <I>hpaR</I> coding sequence via PCR and constructed <i>Pg</i>/HpaR expression system. <I>Pc</I> promoter J23106 is selected to drive the transcription of HpaR. However, we didn't obtain a satisfactory induction ratio. We speculated that this is because binding sites of global regulators such as CRP are located in the promoter. The main function of the pathway is to use the alternative carbon sources in the environment, so bacteria will control strictly the expression of such related genes in rich medium we used to culture the cells. We hope by changing mediums we use to characterize the biosensor, we may achieve a better performance in the near future.
-
 
+
</p>
</p>
<p id="ContentPaaX1">
<p id="ContentPaaX1">
-
PaaX is a repressor of 316-amino acid. As a member of GntR family, it contains a stretch of 25 residues that is similar with the helix-turn-helix motif functioning in DNA recognition and binding <SUP>[6]</SUP>. PaaX contacts with palindrome sequence located at its cognate promoter, Pa, inhibiting the promoter at the absence of the ligand. Unlike other sensors in E. coli, PaaX detects phenylacetic acid-CoA (PA-CoA), which is the first intermediate in the PA degradation pathway. The first step is catalyzed by PaaK <SUP>[6][7]</SUP>.
+
PaaX is a repressor with 316-amino acid. As a member of <I>GntR</I> family, it contains 25 consecutive residues similar to the helix-turn-helix motif responsible for DNA recognition and binding <a href="#Reference"><SUP>[3]</SUP></a>. PaaX binds to a palindrome sequence located in its cognate promoter, <I>Pa</I>, inhibiting the promoter in the absence of ligand. Unlike other sensors in <I>E. coli</I>, PaaX detects phenylacetic acid-CoA (PA-CoA), which is the first intermediate in the PA degradation pathway. This step is catalyzed by PaaK <a href="#Reference"><SUP>[3][4]</SUP></a>.
<br/><br/>
<br/><br/>
-
There are three operons in paa clusters, paaZ, paaABCDEFGHIJK and paaXY. (<B>Fig.6</B>) The promoters regulated by PaaX, PZ and PA, are located at the intergenic region between paaZ and paaA. They possess a palindromic sequence respectively for binding to the repressor. (<B>Fig.7</B>)  
+
There are three operons in <I>paa</I> clusters, namely <I>paaZ</I>, <I>paaABCDEFGHIJK</I> and <I>paaXY</I>. (<B>Fig. 4</B>) The promoters regulated by PaaX, PaaZ and PaaA are located at the intergenic region between gene <I>paaZ</I> and <I>paaA</I>. They each possesses a palindromic sequence for binding of the repressor. (<B>Fig. 5</B>)  
</p>
</p>
<p id="ContentPaaX2">
<p id="ContentPaaX2">
-
The PaaX binding site on Pa is located around the transcriptional initiation site, which interrupts the recruit of RNAP and the formation of open complex. IHF and CRP also have binding sites within the promoter, representing the overall control of the cluster. Like HpaR cluster, it is hypothesized the two promoters may form a repression loop to inhibit the leakage transcription strictly in the absence of ligand. <SUP>[7]</SUP>
+
The PaaX binding site on <I>Pa</I> overlaps the transcriptional initiation site. Thus PaaX's binding will interrupt the recruitment of RNAP and the formation of open complex. The cluster is also controlled by binding of global regulators such as IHF and CRP. Like <I>hpaR</I> cluster, it is hypothesized the two dimers may form a repression loop of DNA to strictly inhibit the leakage transcription in the absence of ligand <a href="#Reference"><SUP>[4]</SUP></a>.
</p>
</p>
<p id="ContentPaaX3">
<p id="ContentPaaX3">
-
We standardized the PaaX genes and create Pa/PaaX expression system. We tuned the expression intensity of the repressor via selecting appropriate Pc promoter. Similar with HpaR, the expression of PA promoter is inhibited by the overall-controlling factor and we haven`t got the distinct induction effect. We would like to try more condition to improve the performance of the sensors.
+
We standardized the <I>paaX</I> genes and create <i>Pa</i>/PaaX expression system. We tuned the expression intensity of the repressor via selecting appropriate <I>Pc</I> promoter from a <l>Pc</l> library. Similar with HpaR, the expression of <I>Pa</I> promoter is inhibited by the global regulators and we didn't obtain an obvious induction effect. We would like to try more culture conditions in order to improve the performance of the sensors.
</p>
</p>
Line 375: Line 386:
<p id="Figure3">
<p id="Figure3">
-
<B>Figure 3.</B>The degradation pathway of 3HPAA. The letters on the arrows are the names of genes in the clusters. eg. HpaB,C means the step 1 is catalyzed by the product of hpaB and hpaC.
+
<B>Figure. 1.</B>The degradation pathway of 3HPAA. The letters on the arrows are the names of genes in the clusters. eg. HpaB,C means the step 1 is catalyzed by the product of hpaB and hpaC.
</p>
</p>
<p id="Figure4">
<p id="Figure4">
-
<B>Figure 4.</B> The hpa cluster map in genome.  
+
<B>Figure. 2.</B> Structure of the <I>hpa</I> cluster.  
-
The arrows inside the squares show the transcriptional direction of genes.PR, PG, PX, PA and PBC, represent the promoter controlling cognate clusters. Addition of 3-hydroxyphenylacetic acid can derepress the promoters inhibited by HpaR (for PR and PG activation) or HpaA (for PBC activation). Finally the enzymes in these clusters will degrade the 3-HPAA to the intermediates in TCA cycle.
+
The arrows inside the squares indicate the transcription direction of the genes.<I>Pr</I>, <I>Pg</I>, <I>Px</I>, <I>Pa</I> and <I>Pbc</I> represent the promoter controlling genes in the cluster. Addition of 3-hydroxyphenylacetic acid can de-repress the promoters inhibited by HpaR (for <I>Pr</I> and <I>Pg</I> activation) or HpaA (for <I>Pbc</I> activation). The enzymes in these clusters will degrade the 3-HPAA to intermediates in TCA cycle.
Line 387: Line 398:
<p id="Figure5">
<p id="Figure5">
-
<B>Figure 5.</B> Structure of the intergenic region between hpaR and hpaG (Galán, B. et al, 2003).
+
<B>Figure. 3.</B> Structure of the intergenic region between <I>hpaR</I> and <I>hpaG</I> (Galán, B. et al, 2003).
-
The elements of the promoters are enclosed by square. Especially, two OPRs are marked. The transcription direction of hpaR and hpaG are indicated with arrows. The IHF and CRP sites are marked.
+
Elements within promoters including two OPRs are marked in squares with different color. The transcription direction of HpaR and HpaG are indicated by arrows.
</p>
</p>
<p id="Figure6">
<p id="Figure6">
-
<B>Figure 6.</B> Structure of the paa cluster.
+
<B>Figure. 4.</B> Structure of the <i>paa</i> cluster.
-
The arrows indicate the direction of transcription of each gene. PZ, PA, PX, the promoters controlling cognate clusters. 3-hydroxyphenylacetic will derepress the promoters, PZ and PA, repressed by PaaX. Enzymes coded by the operons catalyze the degradation of PAA to intermediates in TCA cycle.
+
The arrows indicate the transcription direction of each gene. <I>Pz</I>, <I>Pa</I>, <I>Px</I> are the promoters controlling genes in the cluster. PaaX binding with 3-hydroxyphenylacetic de-repress the downstream promoters, namely <I>Pz</I> and <I>Pa</I>. Enzymes coded by the operons catalyze the degradation of PAA to intermediates in TCA cycle.
</p>
</p>
<p id="Figure7">
<p id="Figure7">
-
<B>Figure 7.</B> The intergenic region which contain Pz and Pa. (Ferrández, A. et al, 2000)
+
<B>Figure. 5.</B> The intergenic region that contains <I>Pz</I> and <I>Pa</I>. (Ferrández, A. et al, 2000)
-
The elements of the promoters are enclosed by square. The transcription direction of paaZ and paaA are indicated with arrows. The IHF and CRP sites are marked.
+
The elements within the promoters are enclosed by square. The transcription direction of <I>paaZ</I> and <I>paaA</I> are indicated by arrows. The IHF and CRP binding sites are also marked.
</p>
</p>
        
        
Line 405: Line 416:
<B>Reference:</B>
<B>Reference:</B>
</br>
</br>
-
[1] Díaz, E., Ferrández, A., & García, J. L. (1998). Characterization of the hca Cluster Encoding the Dioxygenolytic Pathway for Initial Catabolism of 3-Phenylpropionic Acid in Escherichia coliK-12. Journal of bacteriology, 180(11), 2915-2923.
+
 
-
</br>
+
[1] Galán, B., Kolb, A., Sanz, J. M., García, J. L., & Prieto, M. A. (2003). Molecular determinants of the hpa regulatory system of Escherichia coli: the HpaR repressor. <I>Nucleic acids research</I>, 31(22), 6598-6609.
-
[2] Ferrández, A., García, J. L., & Díaz, E. (1997). Genetic characterization and expression in heterologous hosts of the 3-(3-hydroxyphenyl) propionate catabolic pathway of Escherichia coli K-12. Journal of bacteriology, 179(8), 2573-2581.
+
-
</br>
+
-
[3] Manso, I., Torres, B., Andreu, J. M., Menéndez, M., Rivas, G., Alfonso, C., ... & Galán, B. (2009). 3-Hydroxyphenylpropionate and phenylpropionate are synergistic activators of the MhpR transcriptional regulator from Escherichia coli. Journal of Biological Chemistry, 284(32), 21218-21228.
+
-
</br>
+
-
[4] Galán, B., Kolb, A., Sanz, J. M., García, J. L., & Prieto, M. A. (2003). Molecular determinants of the hpa regulatory system of Escherichia coli: the HpaR repressor. Nucleic acids research, 31(22), 6598-6609.
+
</br>
</br>
-
[5] Prieto, M. A., Diaz, E., & García, J. L. (1996). Molecular characterization of the 4-hydroxyphenylacetate catabolic pathway of Escherichia coli W: engineering a mobile aromatic degradative cluster. Journal of bacteriology, 178(1), 111-120.
+
[2] Prieto, M. A., Diaz, E., & García, J. L. (1996). Molecular characterization of the 4-hydroxyphenylacetate catabolic pathway of Escherichia coli W: engineering a mobile aromatic degradative cluster. <I>Journal of bacteriology</I>, 178(1), 111-120.
</br>
</br>
-
[6] Ferrández, A., Miñambres, B., Garcı́a, B., Olivera, E. R., Luengo, J. M., Garcı́a, J. L., & Dı́az, E. (1998). Catabolism of phenylacetic acid in Escherichia coli characterization of a new aerobic hybrid pathway. Journal of Biological Chemistry, 273(40), 25974-25986.
+
[3] Ferrández, A., Miñambres, B., Garcı́a, B., Olivera, E. R., Luengo, J. M., Garcı́a, J. L., & Dı́az, E. (1998). Catabolism of phenylacetic acid in Escherichia coli characterization of a new aerobic hybrid pathway. <I>Journal of Biological Chemistry</I>, 273(40), 25974-25986.
</br>
</br>
-
[7] Ferrández, A., Garcı́a, J. L., & Dı́az, E. (2000). Transcriptional Regulation of the Divergent paaCatabolic Operons for Phenylacetic Acid Degradation inEscherichia coli. Journal of Biological Chemistry, 275(16), 12214-12222.
+
[4] Ferrández, A., Garcı́a, J. L., & Dı́az, E. (2000). Transcriptional Regulation of the Divergent paaCatabolic Operons for Phenylacetic Acid Degradation inEscherichia coli. <I>Journal of Biological Chemistry</I>, 275(16), 12214-12222.
</p>
</p>

Latest revision as of 18:14, 28 October 2013

Biosensors

HpaR PaaX Mechanism Build Our Own Sensor! Mechanism Build Our Own Sensor!

HpaR is of 17,235 Da (149 amino acid) that belongs to MarR family [1]. It functions as a repressor of the hpa cluster consisting of hpaGEDFHI genes (Fig. 2), which participate in the catabolic pathway of 4-hydroxyphenylacetic acid (4HPAA) (Fig. 1). HpaR de-represses downstream genes when exposed to ligands such as 4HPAA, 3-hydroxyphenylacetic acid (3HPAA) and 3, 4-dihydroxyphenylacetic acid (3,4-DHPAA).

hpa cluster consists of three operons. The regulator gene, hpaR, is driven by Pr promoter in the direction reverse to other genes. The adjacent promoter, Pg, initiates the transcription of the functional hpaGEDFHI operon. Pr and Pg are both regulated by HpaR and located in the intergenic region between hpaR and hpaG (Fig. 2). There are two HpaR binding sites, OPR1 and OPR2, belonging to Pr and Pg respectively. HpaR dimer contacts with a palindrome sequence within the binding site in the absence of ligands and inhibit the transcription initiation.

OPR1 is centered in the +2 site of Pg while OPR2 is centered in the +40 site downstream of Pr. It is hypothesized that HpaR's binding to OPR1 inhibits the formation of open complex whereas binding to OPR2 blocks transcription elongation(Fig. 3).

Interestingly, based on the gel retardation assays, most of the HpaR dimer still contacts with the OPR1 in the presence of the ligands, which recruits RNAP and forms open-complex. In this way, HpaR can also be regarded as an activator.

The two binding sites, OPR1 and OPR2, exhibit obvious cooperative effect, i.e., binding with Pg significantly improves the affinity of HpaR to Pr. It is hypothesized that the two HpaR dimers, when binding to two OPR sites respectively, will dimerize again and generate repression loops, similar with the mechanism of AraC . Binding of ligands disrupts the dimer and consequently initiates transcription of the hpaGEDFHI cluster [1].

We obtained hpaR coding sequence via PCR and constructed Pg/HpaR expression system. Pc promoter J23106 is selected to drive the transcription of HpaR. However, we didn't obtain a satisfactory induction ratio. We speculated that this is because binding sites of global regulators such as CRP are located in the promoter. The main function of the pathway is to use the alternative carbon sources in the environment, so bacteria will control strictly the expression of such related genes in rich medium we used to culture the cells. We hope by changing mediums we use to characterize the biosensor, we may achieve a better performance in the near future.

PaaX is a repressor with 316-amino acid. As a member of GntR family, it contains 25 consecutive residues similar to the helix-turn-helix motif responsible for DNA recognition and binding [3]. PaaX binds to a palindrome sequence located in its cognate promoter, Pa, inhibiting the promoter in the absence of ligand. Unlike other sensors in E. coli, PaaX detects phenylacetic acid-CoA (PA-CoA), which is the first intermediate in the PA degradation pathway. This step is catalyzed by PaaK [3][4].

There are three operons in paa clusters, namely paaZ, paaABCDEFGHIJK and paaXY. (Fig. 4) The promoters regulated by PaaX, PaaZ and PaaA are located at the intergenic region between gene paaZ and paaA. They each possesses a palindromic sequence for binding of the repressor. (Fig. 5)

The PaaX binding site on Pa overlaps the transcriptional initiation site. Thus PaaX's binding will interrupt the recruitment of RNAP and the formation of open complex. The cluster is also controlled by binding of global regulators such as IHF and CRP. Like hpaR cluster, it is hypothesized the two dimers may form a repression loop of DNA to strictly inhibit the leakage transcription in the absence of ligand [4].

We standardized the paaX genes and create Pa/PaaX expression system. We tuned the expression intensity of the repressor via selecting appropriate Pc promoter from a Pc library. Similar with HpaR, the expression of Pa promoter is inhibited by the global regulators and we didn't obtain an obvious induction effect. We would like to try more culture conditions in order to improve the performance of the sensors.

Figure. 1.The degradation pathway of 3HPAA. The letters on the arrows are the names of genes in the clusters. eg. HpaB,C means the step 1 is catalyzed by the product of hpaB and hpaC.

Figure. 2. Structure of the hpa cluster. The arrows inside the squares indicate the transcription direction of the genes.Pr, Pg, Px, Pa and Pbc represent the promoter controlling genes in the cluster. Addition of 3-hydroxyphenylacetic acid can de-repress the promoters inhibited by HpaR (for Pr and Pg activation) or HpaA (for Pbc activation). The enzymes in these clusters will degrade the 3-HPAA to intermediates in TCA cycle.

Figure. 3. Structure of the intergenic region between hpaR and hpaG (Galán, B. et al, 2003). Elements within promoters including two OPRs are marked in squares with different color. The transcription direction of HpaR and HpaG are indicated by arrows.

Figure. 4. Structure of the paa cluster. The arrows indicate the transcription direction of each gene. Pz, Pa, Px are the promoters controlling genes in the cluster. PaaX binding with 3-hydroxyphenylacetic de-repress the downstream promoters, namely Pz and Pa. Enzymes coded by the operons catalyze the degradation of PAA to intermediates in TCA cycle.

Figure. 5. The intergenic region that contains Pz and Pa. (Ferrández, A. et al, 2000) The elements within the promoters are enclosed by square. The transcription direction of paaZ and paaA are indicated by arrows. The IHF and CRP binding sites are also marked.

Reference:
[1] Galán, B., Kolb, A., Sanz, J. M., García, J. L., & Prieto, M. A. (2003). Molecular determinants of the hpa regulatory system of Escherichia coli: the HpaR repressor. Nucleic acids research, 31(22), 6598-6609.
[2] Prieto, M. A., Diaz, E., & García, J. L. (1996). Molecular characterization of the 4-hydroxyphenylacetate catabolic pathway of Escherichia coli W: engineering a mobile aromatic degradative cluster. Journal of bacteriology, 178(1), 111-120.
[3] Ferrández, A., Miñambres, B., Garcı́a, B., Olivera, E. R., Luengo, J. M., Garcı́a, J. L., & Dı́az, E. (1998). Catabolism of phenylacetic acid in Escherichia coli characterization of a new aerobic hybrid pathway. Journal of Biological Chemistry, 273(40), 25974-25986.
[4] Ferrández, A., Garcı́a, J. L., & Dı́az, E. (2000). Transcriptional Regulation of the Divergent paaCatabolic Operons for Phenylacetic Acid Degradation inEscherichia coli. Journal of Biological Chemistry, 275(16), 12214-12222.