Team:Hong Kong HKUST/Project/module3

From 2013.igem.org

(Difference between revisions)
 
(32 intermediate revisions not shown)
Line 69: Line 69:
{visibility:hidden;}
{visibility:hidden;}
#globalWrapper
#globalWrapper
-
{position: relative;font-size:127%;width:100%;margin:0;padding:0;padding-bottom:10px;background-color:#494042;height:3500px;}
+
{position: relative;font-size:127%;width:100%;margin:0;padding:0;padding-bottom:10px;background-color:#494042;height:1500px;}
#content
#content
-
{width: 1000px;border:none;background-color:#ffffff;height:3400px;padding:0px;margin-top:0px;line-height: 1.5em;color: black;}
+
{width: 995px;border:none;background-color:#ffffff;height:1450px;padding:0px;margin-top:0px;line-height: 1.5em;color: black;}
#top-section
#top-section
{height:2px;border:none;background-color:#494042;}
{height:2px;border:none;background-color:#494042;}
Line 173: Line 173:
top: 10%;
top: 10%;
right: 2%;
right: 2%;
 +
z-index:16;
}
}
#back-top a {
#back-top a {
Line 295: Line 296:
margin-left: 20px;
margin-left: 20px;
margin-bottom: 0;}
margin-bottom: 0;}
 +
 +
#iGEM_Logo{
 +
width:100px;
 +
height:80px;
 +
position:absolute;
 +
right:10px;
 +
top:60px;
 +
z-index:+15;
 +
}
 +
#hkust_Logo{
 +
width:60px;
 +
height:80px;
 +
position:absolute;
 +
right:110px;
 +
top:60px;
 +
z-index:+15;
 +
}
 +
</style>
</style>
</head>
</head>
<body>
<body>
 +
 +
          <a href="https://2013.igem.org/Main_Page"><img id="iGEM_Logo" src="https://static.igem.org/mediawiki/2013/4/46/Igem_qgem_logo.png"></a>
 +
         
 +
 +
<a href="http://www.ust.hk/eng/index.htm"><img id="hkust_Logo" src="https://static.igem.org/mediawiki/2013/5/55/Hkust_logo.gif"></a>
 +
<p id="back-top" style="display:none;">
<p id="back-top" style="display:none;">
<a href="#top"><span><img src="http://515alive.com/theme/img/up-arrow.png" style="width:90%;"><br><br>BACK TO TOP</span></a>
<a href="#top"><span><img src="http://515alive.com/theme/img/up-arrow.png" style="width:90%;"><br><br>BACK TO TOP</span></a>
Line 332: Line 357:
<li><a href="https://2013.igem.org/Team:Hong_Kong_HKUST/Wetlab">Wetlab</a>
<li><a href="https://2013.igem.org/Team:Hong_Kong_HKUST/Wetlab">Wetlab</a>
<ul>
<ul>
-
<li><a href="https://2013.igem.org/Team:Hong_Kong_HKUST/experiment">Experiments</a></li>
 
<li><a href="https://2013.igem.org/Team:Hong_Kong_HKUST/notebook">Notebook</a></li>
<li><a href="https://2013.igem.org/Team:Hong_Kong_HKUST/notebook">Notebook</a></li>
<li><a href="https://2013.igem.org/Team:Hong_Kong_HKUST/protocols">Protocols</a></li>
<li><a href="https://2013.igem.org/Team:Hong_Kong_HKUST/protocols">Protocols</a></li>
Line 363: Line 387:
       <div class="row">
       <div class="row">
<div class="two columns">
<div class="two columns">
-
<br><ul class="side-nav">
+
<br>
 +
<ul class="side-nav">
<li>
<li>
-
<h6>Protein Trafficking</h6>
+
<h6>Modules</h6>
</li>
</li>
<li class="divider"></li>
<li class="divider"></li>
 +
<a href="https://2013.igem.org/Team:Hong_Kong_HKUST/Project/module4">Glyoxylate Shunt</a>
 +
 +
</li>
 +
<li>
 +
Protein Trafficking
 +
<ul><li>
 +
<li>
<li>
<a href=#1>Overview</a>
<a href=#1>Overview</a>
</li>
</li>
<li>
<li>
-
<a href=#2>Mechanism of MLS</a>
+
<a href=#2>Biology of Mitochondrial Leader Sequence (MLS)</a>
</li>
</li>
-
<li>
+
-
<a href=#3>Linkage to Project</a>
+
<li>
 +
<a href=#3>Reference</a>
                                                  
                                                  
</li>
</li>
-
<li>
+
</ul>
-
<a href=#4>Reference</a>
+
-
                                               
+
-
</li>
+
-
 
+
-
+
-
</ul>
+
-
<ul class="side-nav1">
+
-
<li>
+
-
<h6>Modules</h6>
+
</li>
</li>
-
<li class="divider"></li>
+
<li>
-
<li>
+
-
<a href="https://2013.igem.org/Team:Hong_Kong_HKUST/Project/module2">FA Quantification & Cell Viability</a>
+
-
</li>
+
-
<li>
+
<a href="https://2013.igem.org/Team:Hong_Kong_HKUST/Project/module2">FA Sensing Mechanism</a>
<a href="https://2013.igem.org/Team:Hong_Kong_HKUST/Project/module2">FA Sensing Mechanism</a>
-
</li>
+
 
-
<li>
+
-
Protein Trafficking
+
-
</li>
+
-
<li>
+
-
<a href="https://2013.igem.org/Team:Hong_Kong_HKUST/Project/module4">Glyoxylate Shunt</a>
+
</li>
</li>
</ul>
</ul>
Line 408: Line 423:
<div class="row" id="ugd-members">
<div class="row" id="ugd-members">
<div class="twelve columns">
<div class="twelve columns">
-
 
<h2 class="centered">Protein Trafficking</h2>
<h2 class="centered">Protein Trafficking</h2>
</div>
</div>
Line 415: Line 429:
<div class="nine columns"><p id="1"></p>
<div class="nine columns"><p id="1"></p>
<h3>Overview</h3>
<h3>Overview</h3>
-
In nature, eukaryotic cell mitochondria usually have their protein encoded by gene in nucleus and produced from cytosol. In this process, MLS will act as signal peptide to target the protein into mitochondria.
+
In our project, we introduced bacterial glyoxylate enzymes into mammalian cells to create alternative metabolic pathway. However, unlike their native environment in bacteria, the two enzymes needed to find their way through the high compartmentalized system in order to reach the citric acid cycle where they could act on.
<br>
<br>
-
In our module, we will construct the MLS BioBrick <a href="http://parts.igem.org/Part:BBa_K1119001">K1119001</a>, and <a href="https://2013.igem.org/Team:Hong_Kong_HKUST/characterization/mls">characterize</a> it quantitatively.
+
To guide the glyoxylate enzymes into the mitochondria where mammalian citric acid cycle resides, we produced recombinant glyoxylate enzymes by attaching the Mitochondrial Leader Sequence (MLS) to their N-termini.
<br>
<br>
 +
We have also constructed the MLS in its own into standard BioBricks (<a href="http://parts.igem.org/Part:BBa_K1119000">BBa_K1119000</a> & <a href="http://parts.igem.org/Part:BBa_K1119001">BBa_K1119001</a>), and we quantitatively characterized their behavior using GFP reporter.
</div>
</div>
</div>
</div>
<div class="row">
<div class="row">
<div class="nine columns"><p id="2"></p>
<div class="nine columns"><p id="2"></p>
-
<h3>Mechanism of MLS</h3>
+
<h3>Biology of Mitochondrial Leader Sequence (MLS)</h3>
-
MLS is attached to the N-terminal of enzyme, and bind to the receptor protein on mitochondrial membrane, and diffuse to contact site where inner and outer membrane fuse, then bring the ACE enzyme into mitochondria. Afterward, it is be cleaved, leaving the enzyme in mitochondria.
+
<p>In eukaryotes, the signal sequence guides the translocation of the newly synthesized peptide.</p>
 +
<p>The story starts with the MLS attached to the N-terminus of the protein of interest. Once the protein of interest is synthesized, this preprotein would remain unfolded by associating with chaperons. The preprotein will stay in the cytosol until the MLS gets recognized by receptor of the TOM complex on the outer mitochondrial membrane. Binding of the MLS to the receptor will trigger the feeding of the peptide through the translocation channel. Afterwards, the MLS will then be handed over to a TIM complex which sits on the inner membrane, which will then open up the channels on the inner membrane and allow the peptide to pass through. Once the peptide is through the double membranes, mitochondrial chaperone will be involved in pulling the peptide into the mitochondria and refold the protein. Lastly, the MLS will be cleaved by signal peptidase and dissociate from the transported peptide. (Alberts, 2002) <br>For the MLS we used, four additional amino acid residues (Ile-His-Ser-Leu) will be left at the N-terminus of the protein after the cleavage.(Invitrogen, 2012)</p>
 +
<img src="https://static.igem.org/mediawiki/2013/8/87/MLS_mechanism.png" >
</div>
</div>
</div>
</div>
<div class="row">
<div class="row">
<div class="nine columns"><p id="3"></p>
<div class="nine columns"><p id="3"></p>
-
<h3>Linkage to project</h3>
+
-
In our project, we introduced bacterial enzymes to mammalian cell to modify metabolic pathway. However, unlike bacteria, citric acid cycle in mammalian cells is compartmentalized in mitochondria. The ACE proteins should be targeted to mitochondria for their functionality. To do so, we fused ACE enzymes with Mitochondrial Leader Sequence (MLS).
+
-
<br><br></div></div>
+
-
<div class="row">
+
<div class="nine columns"><p id="5"></p>
<div class="nine columns"><p id="5"></p>
<h3>Reference</h3>
<h3>Reference</h3>
-
Alberts, B., Bray, D., Hopkin, K., Johnson, A., Lewis, J., Raff, M., Roberts, K., & Walter, P. (2010). Essential cell biology. (3rd ed., p. 505). UK: Garland Science.<br><br>
+
Alberts, B., Bray, D., Hopkin, K., Johnson, A., Lewis, J., Raff, M., Roberts, K., & Walter, P. (2010). <i>Essential cell biology.</i> (3rd ed., p. 505). UK: Garland Science.<br><br>
 +
pCMV/<i>myc</i>/mito Invitrogen.(2012).pShooter™ Vector(pCMV/<i>myc</i> vectors).Retrieved from http://tools.lifetechnologies.com/content/sfs/manuals/pshooter_pcmv_man.pdf <br><br>
 +
Alberts, B. (2002). <i>Molecular biology of the cell.</i> (4th ed., pp. 1050-1061). New York:Garland Science.
 +
<br>
</div>
</div>
</div>
</div>

Latest revision as of 12:42, 28 October 2013

Protein Trafficking

Overview

In our project, we introduced bacterial glyoxylate enzymes into mammalian cells to create alternative metabolic pathway. However, unlike their native environment in bacteria, the two enzymes needed to find their way through the high compartmentalized system in order to reach the citric acid cycle where they could act on.
To guide the glyoxylate enzymes into the mitochondria where mammalian citric acid cycle resides, we produced recombinant glyoxylate enzymes by attaching the Mitochondrial Leader Sequence (MLS) to their N-termini.
We have also constructed the MLS in its own into standard BioBricks (BBa_K1119000 & BBa_K1119001), and we quantitatively characterized their behavior using GFP reporter.

Biology of Mitochondrial Leader Sequence (MLS)

In eukaryotes, the signal sequence guides the translocation of the newly synthesized peptide.

The story starts with the MLS attached to the N-terminus of the protein of interest. Once the protein of interest is synthesized, this preprotein would remain unfolded by associating with chaperons. The preprotein will stay in the cytosol until the MLS gets recognized by receptor of the TOM complex on the outer mitochondrial membrane. Binding of the MLS to the receptor will trigger the feeding of the peptide through the translocation channel. Afterwards, the MLS will then be handed over to a TIM complex which sits on the inner membrane, which will then open up the channels on the inner membrane and allow the peptide to pass through. Once the peptide is through the double membranes, mitochondrial chaperone will be involved in pulling the peptide into the mitochondria and refold the protein. Lastly, the MLS will be cleaved by signal peptidase and dissociate from the transported peptide. (Alberts, 2002)
For the MLS we used, four additional amino acid residues (Ile-His-Ser-Leu) will be left at the N-terminus of the protein after the cleavage.(Invitrogen, 2012)

Reference

Alberts, B., Bray, D., Hopkin, K., Johnson, A., Lewis, J., Raff, M., Roberts, K., & Walter, P. (2010). Essential cell biology. (3rd ed., p. 505). UK: Garland Science.

pCMV/myc/mito Invitrogen.(2012).pShooter™ Vector(pCMV/myc vectors).Retrieved from http://tools.lifetechnologies.com/content/sfs/manuals/pshooter_pcmv_man.pdf

Alberts, B. (2002). Molecular biology of the cell. (4th ed., pp. 1050-1061). New York:Garland Science.