Team:Tokyo Tech
From 2013.igem.org
(24 intermediate revisions not shown) | |||
Line 60: | Line 60: | ||
<h3><font size="6">P</font>roject Background</h3> | <h3><font size="6">P</font>roject Background</h3> | ||
<h2><p> | <h2><p> | ||
- | In this iGEM Competition, we intended to tell the public the development of synthetic biology, especially about the network programming, as well as we enjoyed our activity for iGEM. Tokyo Tech 2013 assisted with an experiment workshop for high school students, participated in a poster session and collected feedback from public people as human practice (Fig. 1-1-1). | + | In this iGEM Competition, we intended to tell the public about the development of synthetic biology, especially about the network programming, as well as we enjoyed our activity for iGEM. Tokyo Tech 2013 assisted with an experiment workshop for high school students, participated in a poster session and collected feedback from public people as human practice (Fig. 1-1-1). We learned that an interesting story is an easier way to make general people |
+ | understand the importance of genetic programming in synthetic biology. | ||
+ | To respond further to the feedback that we received, we also address a farming issue. Thus, we designed a story which contains a farming issue and a state switching circuit in <i>E. coli</i>, the life of ninja: battle and farming. | ||
Line 66: | Line 68: | ||
<td> | <td> | ||
<a href="https://2013.igem.org/Team:Tokyo_Tech/Human_Practice#2._Human_Practice_1:_Experiment_Workshop"><img src="https://static.igem.org/mediawiki/2013/0/06/Titech2013_home_Fig1_human_experiment.jpg" width="300"></a><br> | <a href="https://2013.igem.org/Team:Tokyo_Tech/Human_Practice#2._Human_Practice_1:_Experiment_Workshop"><img src="https://static.igem.org/mediawiki/2013/0/06/Titech2013_home_Fig1_human_experiment.jpg" width="300"></a><br> | ||
- | <h4>[Fig. 1-1-1. Poster session | + | <h4>[Fig. 1-1-1. Poster session]<br> |
- | Yellow labels and blue labels are sticked on our posters | + | Yellow labels and blue labels are sticked on our posters. |
</h4> | </h4> | ||
</td> | </td> | ||
Line 80: | Line 82: | ||
<h3><font size="6">S</font>tory</h3> | <h3><font size="6">S</font>tory</h3> | ||
<h2><p> | <h2><p> | ||
- | Ninja is a | + | Ninja is a Japan's ancient spy-warrior. Ninja usually mimics an ordinary civilian. Once he detects samurai who is the target of assassination, he immediately gets ready for battle. He attacks samurai by throwing so-called "ninja stars". These weapons are called "shuriken" in Japanese (Fig. 1-1-2). |
</p></h2> | </p></h2> | ||
</td> | </td> | ||
Line 92: | Line 94: | ||
<table align="center" border=0> | <table align="center" border=0> | ||
<tr><td> | <tr><td> | ||
- | <span onclick="show(1)"><img id="step1" src="https://static.igem.org/mediawiki/2013/4/47/Titech2013_home_step1active.gif" width="400" border=0></span></td> | + | <span onclick="show(1)"><img id="step1" src="https://static.igem.org/mediawiki/2013/4/47/Titech2013_home_step1active.gif" width="400" border=0 onmouseover=this.src="https://static.igem.org/mediawiki/2013/4/47/Titech2013_home_step1active.gif" onmouseout=this.src="https://static.igem.org/mediawiki/2013/d/d8/Titech2013_home_step1.gif"></span></td> |
<td rowspan=5 align="center"> | <td rowspan=5 align="center"> | ||
Line 100: | Line 102: | ||
</tr> | </tr> | ||
- | <tr><td><span onclick="show(2)"><img id="step2" src="https://static.igem.org/mediawiki/2013/b/b0/Titech2013_home_step2.gif" width="400" border=0></span></td></tr> | + | <tr><td><span onclick="show(2)"><img id="step2" src="https://static.igem.org/mediawiki/2013/b/b0/Titech2013_home_step2.gif" width="400" border=0 onmouseover=this.src="https://static.igem.org/mediawiki/2013/0/07/Titech2013_home_step2active.gif" onmouseout=this.src="https://static.igem.org/mediawiki/2013/b/b0/Titech2013_home_step2.gif"></span></td></tr> |
- | <tr><td><span onclick="show(3)"><img id="step3" src="https://static.igem.org/mediawiki/2013/0/0f/Titech2013_home_step3.gif" width="400" border=0></span></td></tr> | + | <tr><td><span onclick="show(3)"><img id="step3" src="https://static.igem.org/mediawiki/2013/0/0f/Titech2013_home_step3.gif" width="400" border=0 onmouseover=this.src="https://static.igem.org/mediawiki/2013/9/9c/Titech2013_home_step3active.gif" onmouseout=this.src="https://static.igem.org/mediawiki/2013/0/0f/Titech2013_home_step3.gif"></span></td></tr> |
- | <tr><td><span onclick="show(4)"><img id="step4" src="https://static.igem.org/mediawiki/2013/9/9e/Titech2013_home_step4.gif" width="400" border=0></span></td></tr> | + | <tr><td><span onclick="show(4)"><img id="step4" src="https://static.igem.org/mediawiki/2013/9/9e/Titech2013_home_step4.gif" width="400" border=0 onmouseover=this.src="https://static.igem.org/mediawiki/2013/7/71/Titech2013_home_step4active.gif" onmouseout=this.src="https://static.igem.org/mediawiki/2013/9/9e/Titech2013_home_step4.gif"></span></td></tr> |
- | <tr><td><span onclick="show(5)"><img id="step5" src="https://static.igem.org/mediawiki/2013/e/e6/Titech2013_home_step5.gif" width="400" border=0></span></td></tr> | + | <tr><td><span onclick="show(5)"><img id="step5" src="https://static.igem.org/mediawiki/2013/e/e6/Titech2013_home_step5.gif" width="400" border=0 onmouseover=this.src="https://static.igem.org/mediawiki/2013/e/e8/Titech2013_home_step5active.gif" onmouseout=this.src="https://static.igem.org/mediawiki/2013/e/e6/Titech2013_home_step5.gif"></span></td></tr> |
</table> | </table> | ||
Line 115: | Line 117: | ||
<td colspan=2> | <td colspan=2> | ||
<h3><font size="6">P</font>roject Overview</h3> | <h3><font size="6">P</font>roject Overview</h3> | ||
- | <h2><p>In our programming of artificial genetic circuit, E. ninja heads casts. In response to E. civilian signal or E. samurai signal, E. ninja changes its state: | + | <h2><p>In our programming of artificial genetic circuit, <i>E. ninja</i> heads casts. In response to <i>E. civilian</i> signal or <i>E. samurai</i> signal, <i>E. ninja</i> changes its state: "Mimic state" or "Attack state". The circuit of <i>E. ninja</i> contains a bi-stable switch part and a signal dependent switching part. We decided to use 3OC6HSL and 3OC12HSL as the signals. The crosstalk between these two signals is well known as a significant problem in synthetic biology. To realize an accurate switching, we designed a circuit which achieved the circumvention of crosstalk that occurs in bacterial cell-cell communication system (Fig. 1-1-4). |
<div align="right"><a href="https://2013.igem.org/Team:Tokyo_Tech/Project/Ninja_State_Switching#1._Introduction">(Go to State Switching page)</a></div> | <div align="right"><a href="https://2013.igem.org/Team:Tokyo_Tech/Project/Ninja_State_Switching#1._Introduction">(Go to State Switching page)</a></div> | ||
</p></h2> | </p></h2> | ||
Line 122: | Line 124: | ||
<div align="center"><a href="https://2013.igem.org/Team:Tokyo_Tech/Experiment/Crosstalk_Circumvention_Assay#1._Introduction"><img src="https://static.igem.org/mediawiki/2013/6/6f/Titech2013_home_Fig3_crosstalk_assay.png" width="120" height="200" style="border: #E7E5F0 2px"></a></div><br> | <div align="center"><a href="https://2013.igem.org/Team:Tokyo_Tech/Experiment/Crosstalk_Circumvention_Assay#1._Introduction"><img src="https://static.igem.org/mediawiki/2013/6/6f/Titech2013_home_Fig3_crosstalk_assay.png" width="120" height="200" style="border: #E7E5F0 2px"></a></div><br> | ||
<h4>[Fig. 1-1-3. The result of our wet experiment for the circumvention of the crosstalk]<br> | <h4>[Fig. 1-1-3. The result of our wet experiment for the circumvention of the crosstalk]<br> | ||
- | The level of GFP expression in cells ,when TetR is active, was clearly lower than when TetR is inhibited. Even with activated LasR, lux/tet hybrid promoter (<a href="http://parts.igem.org/Part:BBa_K1139110">BBa_K1139110</a>) was repressed by TetR precisely. This result showed our network including | + | The level of GFP expression in cells, when TetR is active, was clearly lower than that when TetR is inhibited. Even with activated LasR, <i>lux/tet</i> hybrid promoter (<a href="http://parts.igem.org/Part:BBa_K1139110">BBa_K1139110</a>) was repressed by TetR precisely. This result showed that our network including TetR can circumvent crosstalk by the activated LasR. |
</h4><br> | </h4><br> | ||
Line 130: | Line 132: | ||
<td colspan=3 align="center"> | <td colspan=3 align="center"> | ||
<a href="https://2013.igem.org/Team:Tokyo_Tech/Project/Ninja_State_Switching#2-2._The_problem:_crosstalk"><img src="https://static.igem.org/mediawiki/2013/6/6c/Titech2013_home_Fig4_genetic_circuit.png" width="600" height="300"></a><br> | <a href="https://2013.igem.org/Team:Tokyo_Tech/Project/Ninja_State_Switching#2-2._The_problem:_crosstalk"><img src="https://static.igem.org/mediawiki/2013/6/6c/Titech2013_home_Fig4_genetic_circuit.png" width="600" height="300"></a><br> | ||
- | <h4>[Fig. 1-1-4 Our designed circuit for circumvention of | + | <h4>[Fig. 1-1-4. Our designed circuit for the circumvention of crosstalk]<br> |
- | We designed the circumvention of | + | We designed the circumvention of crosstalk by network engineering. |
</h4> | </h4> | ||
Line 139: | Line 141: | ||
<td colspan=3> | <td colspan=3> | ||
<h2><p> | <h2><p> | ||
- | Our wet experiment results showed that the combination of lux/tet hybrid promoter and TetR protein circumvented the crosstalk by preventing the LasR protein from acting on LuxR-binding sequences (Fig. 1-1-3). Our mathematical model based on these results showed the circumvention of | + | Our wet experiment results showed that the combination of <i>lux/tet</i> hybrid promoter and TetR protein circumvented the crosstalk by preventing the LasR protein from acting on LuxR-binding sequences (Fig. 1-1-3). Our mathematical model based on these results showed the circumvention of crosstalk in the circuit including toggle switch and crosstalk circumvention system(Fig. 1-1-5). |
<div align="right"><a href="https://2013.igem.org/Team:Tokyo_Tech/Modeling/Crosstalk_Circumvention#1._Introduction">(Go to Modeling page)</a></div> | <div align="right"><a href="https://2013.igem.org/Team:Tokyo_Tech/Modeling/Crosstalk_Circumvention#1._Introduction">(Go to Modeling page)</a></div> | ||
</p></h2> | </p></h2> | ||
Line 148: | Line 150: | ||
<td colspan=3> | <td colspan=3> | ||
<div align="center"><a href="https://2013.igem.org/Team:Tokyo_Tech/Modeling/Crosstalk_Circumvention#3._Analytical_method_of_effectiveness_of_crosstalk_prevention_circuit"><img src="/wiki/images/thumb/b/b5/Titech2013_Ninja_State_Switching_2-1_4-3.jpg/700px-Titech2013_Ninja_State_Switching_2-1_4-3.jpg" width="700"></a></div><br> | <div align="center"><a href="https://2013.igem.org/Team:Tokyo_Tech/Modeling/Crosstalk_Circumvention#3._Analytical_method_of_effectiveness_of_crosstalk_prevention_circuit"><img src="/wiki/images/thumb/b/b5/Titech2013_Ninja_State_Switching_2-1_4-3.jpg/700px-Titech2013_Ninja_State_Switching_2-1_4-3.jpg" width="700"></a></div><br> | ||
- | <div align="center"><h4>[Fig. 1-1-5. Our mathematical model for the circuit of E. ninja]<br> | + | <div align="center"><h4>[Fig. 1-1-5. Our mathematical model for the circuit of <i>E. ninja</i>]<br> |
The solid/dotted lines stand for the case with/without the crosstalk circumvention. | The solid/dotted lines stand for the case with/without the crosstalk circumvention. | ||
The expression of LacI is repressed through the crosstalk circumvention. | The expression of LacI is repressed through the crosstalk circumvention. | ||
Line 157: | Line 159: | ||
<tr> | <tr> | ||
<td> | <td> | ||
- | <a href="https://2013.igem.org/Team:Tokyo_Tech/Experiment/pSB-M13_Plasmid_Assay#1._Introduction"><img src="https://static.igem.org/mediawiki/2013/ | + | <a href="https://2013.igem.org/Team:Tokyo_Tech/Experiment/pSB-M13_Plasmid_Assay#1._Introduction"><img src="https://static.igem.org/mediawiki/2013/5/57/Titech2013_Project_M13_shuriken_Fig_2-2-3.png" width="240"></a><br> |
- | <h4>[Fig. 1-1-6. Our new part for inducible phage release]<br>We designed a new part for inducible phage release. | + | <h4>[Fig. 1-1-6. Our new part for inducible phage release]<br>We designed a new part for inducible phage release. Varoius promoters are allowed to be inserted upstream of <i>g2p</i> to regulate the phage release. |
</h4> | </h4> | ||
</td> | </td> | ||
Line 169: | Line 171: | ||
<td> | <td> | ||
<h2><p> | <h2><p> | ||
- | In addition, <i>E. ninja</i> releases M13 phage, which corresponds to shuriken, when <i>E. ninja</i> receives <i>E. samurai</i> signal. The inducible phage release will open new way in synthetic biology by achieving programmed DNA messaging (Fig. 1-1-6). | + | In addition, <i>E. ninja</i> releases M13 phage, which corresponds to shuriken, when <i>E. ninja</i> receives <i>E. samurai</i> signal. The inducible phage release will open a new way in synthetic biology by achieving the programmed DNA messaging (Fig. 1-1-6). |
<div align="right"><a href="https://2013.igem.org/Team:Tokyo_Tech/Project/M13_Shuriken#1._Abstract">(Go to Shuriken page)</a></div> | <div align="right"><a href="https://2013.igem.org/Team:Tokyo_Tech/Project/M13_Shuriken#1._Abstract">(Go to Shuriken page)</a></div> | ||
</p></h2> | </p></h2> | ||
Line 177: | Line 179: | ||
<td colspan=2> | <td colspan=2> | ||
<h2><p> | <h2><p> | ||
- | In the second-life story, <i>E. ninja</i> starts farming in a peaceful village. He can increase plant growth by synthesizing several plant hormones depending on the soil environment. We constructed an improved phosphate sensor (<i>phoA</i> promoter, <a href=http://parts.igem.org/Part:BBa_K1139201>BBa_K1139201</a>). Also, we learned methods for quantitative analysis | + | In the second-life story, <i>E. ninja</i> starts farming in a peaceful village. He can increase plant growth by synthesizing several plant hormones depending on the soil environment. We constructed an improved phosphate sensor (<i>phoA</i> promoter, <a href=http://parts.igem.org/Part:BBa_K1139201>BBa_K1139201</a>). Also, we learned methods for quantitative analysis for cytokinin, one of the plant hormones, through a bioassay of cucumber seed sprouts (Fig. 1-1-8). Towards further consideration of farming with microbes, we also continued the human practice investigation through some interviews with science foundations and organizations (Fig. 1-1-8). |
<div align="right"><a href="https://2013.igem.org/Team:Tokyo_Tech/Project/Farming">(Go to Farming page)</a></div> | <div align="right"><a href="https://2013.igem.org/Team:Tokyo_Tech/Project/Farming">(Go to Farming page)</a></div> | ||
</p></h2> | </p></h2> | ||
Line 193: | Line 195: | ||
<td colspan=3> | <td colspan=3> | ||
<h2><p> | <h2><p> | ||
- | We believe that our | + | We believe that our project can contribute to various fields. First, our crosstalk circumvention system gives more flexibility to design genetic circuits. By adding only a few genes, you can circumvent crosstalk of AHL. Second, our inducible phage release system can make DNA messaging more complex and more diverse. Moreover, for bioremediation, we can search for new M13 phage hosts by using our designed M13 phage. Finally, our farming project is expected to act as a pioneering trail toward new approaches in farming. Especially, our strategy to produce plant hormones in temporal patterns in <i>E. coli</i> can be applied to studying the plants' response to external plant hormones. We hope to contribute to spreading the importance and the great possibilities of synthetic biology through the public. |
- | + | ||
- | + | ||
</p></h2> | </p></h2> | ||
</td> | </td> | ||
Line 214: | Line 214: | ||
<font size="6" style="white-space:nowrap;">Tokyo Institute of Technology Found project</font><br><br><br> | <font size="6" style="white-space:nowrap;">Tokyo Institute of Technology Found project</font><br><br><br> | ||
<font size="6" style="white-space:nowrap;">Aizawa Foundation</font><br><br><br> | <font size="6" style="white-space:nowrap;">Aizawa Foundation</font><br><br><br> | ||
- | <font size="6" style="white-space:nowrap;">Mr. Isao Ono | + | <font size="6" style="white-space:nowrap;">Mr. Isao Ono Mr. Fumio Hombo</font></div> |
<br> | <br> | ||
</div><br> | </div><br> | ||
<div align="center"><a href="https://2013.igem.org/Team:Tokyo_Tech#top"><img src="https://static.igem.org/mediawiki/2013/f/f0/Titeh2013_backtotop.png" width="200px"></a></div> | <div align="center"><a href="https://2013.igem.org/Team:Tokyo_Tech#top"><img src="https://static.igem.org/mediawiki/2013/f/f0/Titeh2013_backtotop.png" width="200px"></a></div> | ||
</div> | </div> |
Latest revision as of 03:43, 29 October 2013
Project BackgroundIn this iGEM Competition, we intended to tell the public about the development of synthetic biology, especially about the network programming, as well as we enjoyed our activity for iGEM. Tokyo Tech 2013 assisted with an experiment workshop for high school students, participated in a poster session and collected feedback from public people as human practice (Fig. 1-1-1). We learned that an interesting story is an easier way to make general people understand the importance of genetic programming in synthetic biology. To respond further to the feedback that we received, we also address a farming issue. Thus, we designed a story which contains a farming issue and a state switching circuit in E. coli, the life of ninja: battle and farming. |
[Fig. 1-1-1. Poster session]
|
|||||||
[Fig. 1-1-2. Ninja vs. Samurai in Tokyo Tech]
|
StoryNinja is a Japan's ancient spy-warrior. Ninja usually mimics an ordinary civilian. Once he detects samurai who is the target of assassination, he immediately gets ready for battle. He attacks samurai by throwing so-called "ninja stars". These weapons are called "shuriken" in Japanese (Fig. 1-1-2). |
|||||||
Click a step shown below to know what happens in our circuit! |
||||||||
Project OverviewIn our programming of artificial genetic circuit, E. ninja heads casts. In response to E. civilian signal or E. samurai signal, E. ninja changes its state: "Mimic state" or "Attack state". The circuit of E. ninja contains a bi-stable switch part and a signal dependent switching part. We decided to use 3OC6HSL and 3OC12HSL as the signals. The crosstalk between these two signals is well known as a significant problem in synthetic biology. To realize an accurate switching, we designed a circuit which achieved the circumvention of crosstalk that occurs in bacterial cell-cell communication system (Fig. 1-1-4). |
[Fig. 1-1-3. The result of our wet experiment for the circumvention of the crosstalk] |
|||||||
[Fig. 1-1-4. Our designed circuit for the circumvention of crosstalk]
|
||||||||
Our wet experiment results showed that the combination of lux/tet hybrid promoter and TetR protein circumvented the crosstalk by preventing the LasR protein from acting on LuxR-binding sequences (Fig. 1-1-3). Our mathematical model based on these results showed the circumvention of crosstalk in the circuit including toggle switch and crosstalk circumvention system(Fig. 1-1-5). |
||||||||
[Fig. 1-1-5. Our mathematical model for the circuit of E. ninja] |
||||||||
[Fig. 1-1-6. Our new part for inducible phage release]
|
[Fig. 1-1-7. Distribution of plaques and analysis] |
In addition, E. ninja releases M13 phage, which corresponds to shuriken, when E. ninja receives E. samurai signal. The inducible phage release will open a new way in synthetic biology by achieving the programmed DNA messaging (Fig. 1-1-6). |
||||||
In the second-life story, E. ninja starts farming in a peaceful village. He can increase plant growth by synthesizing several plant hormones depending on the soil environment. We constructed an improved phosphate sensor (phoA promoter, BBa_K1139201). Also, we learned methods for quantitative analysis for cytokinin, one of the plant hormones, through a bioassay of cucumber seed sprouts (Fig. 1-1-8). Towards further consideration of farming with microbes, we also continued the human practice investigation through some interviews with science foundations and organizations (Fig. 1-1-8). Future Works |
[Fig. 1-1-8. Our bioassay of cucumber seed sprouts]
|
|||||||
We believe that our project can contribute to various fields. First, our crosstalk circumvention system gives more flexibility to design genetic circuits. By adding only a few genes, you can circumvent crosstalk of AHL. Second, our inducible phage release system can make DNA messaging more complex and more diverse. Moreover, for bioremediation, we can search for new M13 phage hosts by using our designed M13 phage. Finally, our farming project is expected to act as a pioneering trail toward new approaches in farming. Especially, our strategy to produce plant hormones in temporal patterns in E. coli can be applied to studying the plants' response to external plant hormones. We hope to contribute to spreading the importance and the great possibilities of synthetic biology through the public. |
||||||||