Team:Dundee

From 2013.igem.org

(Difference between revisions)
 
(38 intermediate revisions not shown)
Line 4: Line 4:
<html lang="en">
<html lang="en">
    
    
-
      <!-- Begin page content -->
+
<!-- Begin page content -->
-
      <div class="container">
+
<div class="container">
-
<div class="span12" style="margin-left:0px;margin-top: 10px;">
+
      <div class="span12" style="margin-left:0px;margin-top: 10px;">
             <!-- a very basic slider, note the structure of each item. you can add too but not take away (classes and id's that is) -->
             <!-- a very basic slider, note the structure of each item. you can add too but not take away (classes and id's that is) -->
Line 13: Line 13:
               <div class="carousel-inner">
               <div class="carousel-inner">
-
 
                 <div class="item active"><!-- add the active class to any slider you want shown first -->
                 <div class="item active"><!-- add the active class to any slider you want shown first -->
-
                   <img src="https://static.igem.org/mediawiki/2013/3/31/TOXIMOPBanner-Dundee.jpg">
+
                   <img src="https://static.igem.org/mediawiki/2013/thumb/1/1e/BannerToximop.jpg/800px-BannerToximop.jpg" style="width:100%;height:100%">
                 </div>
                 </div>
                 <div class="item"><!-- add the active class to any slider you want shown first -->
                 <div class="item"><!-- add the active class to any slider you want shown first -->
-
                   <img src="https://static.igem.org/mediawiki/2013/1/11/TheProblem-Dundee.jpg">
+
                   <img src="https://static.igem.org/mediawiki/2013/thumb/a/a4/Algal_Bloom3.jpg/800px-Algal_Bloom3.jpg" style="width:100%;height:100%">
                 </div>
                 </div>
                 <div class="item"><!-- add the active class to any slider you want shown first -->
                 <div class="item"><!-- add the active class to any slider you want shown first -->
-
                   <img src="https://static.igem.org/mediawiki/2013/4/4e/TheSolution-Dundee.jpg">
+
                   <img src="https://static.igem.org/mediawiki/2013/thumb/2/25/Solution3.jpg/800px-Solution3.jpg" style="width:100%;height:100%">
                 </div>
                 </div>
-
 
               </div>
               </div>
Line 35: Line 33:
             </div>
             </div>
       </div>
       </div>
-
 
       <div class="row">
       <div class="row">
Line 41: Line 38:
         <div class="span6" style="text-align:justify">
         <div class="span6" style="text-align:justify">
-
         <h2 style="margin-top:-10px;"> The Microcystin Monster </h2>
+
         <h2 style="margin-top:-10px;"> Targeting a Deadly Toxin</h2>
-
         <p> Algal blooms are an ever-growing problem in freshwater systems. At the Beijing Olympics 2008, 10,000 people were hired to clean up the extensive algal bloom in time for the sailing regatta. The main concern is the level of a toxin called microcystin, which is released by cyanobacteria when they die and lyse. <br><br>
+
 
 +
         <p>
 +
        Explosions in the population of cyanobacteria can produce toxic algal blooms. Microcystin-LR the most potent and common algal bloom toxin, binds Protein Phosphatase 1. The average cyanobacteria infested lake in America contains over 1000 times the Microcystin safe drinking water limit set by the World Health Organisation. <br><br>
 +
 
 +
        Concerned by a harmful algal bloom in the local community, we used synthetic biology to target the toxin. We exploited the mechanism of Microcystin's toxicity to develop our Mop; by expressing Protein Phosphatase 1 we can mop up Microcystin. The interaction was also the basis for developing a biological Detector. To deploy our Detector and to consider the root causes of algal blooms we created the electronic Moptopus. It sits on a lake and monitors conditions relevant to cyanobacterial growth to help predict future blooms.
 +
        </p>
-
        Microcystin, a toxin released by Microcystis aeruginosa, is harmful to mammals due to its ability to latch on to the human protein PP1, thus ceasing its operation. We are exploiting the ability of the human protein phosphatase (PP1) to covalently bind to microcystin, in order to develop a biological mop ‘janitor’ to rid algal bloom water of the toxin.</p>
 
         <br>
         <br>
         </div>
         </div>
Line 52: Line 53:
           </div>
           </div>
       </div><!-- Row End -->
       </div><!-- Row End -->
 +
 +
 +
<!--
 +
      <div class="row" style="padding-bottom:20px">
 +
      <div class="span6">text</div>
 +
      <div class="span6"><img src="https://static.igem.org/mediawiki/2013/c/cc/Digi-Poster-Ad-Dundee.jpg"></div>
 +
      </div>
 +
-->
Line 57: Line 66:
       <div class="row">
       <div class="row">
-
       <div class="span3">
+
       <div class="span3" style="height:275px">
         <div id="mainwrapper">
         <div id="mainwrapper">
-
         <a href="https://2013.igem.org/Team:Dundee/Project/Mop">
+
         <a href="https://2013.igem.org/Team:Dundee/Project">
                     <!-- Image Caption 6 -->
                     <!-- Image Caption 6 -->
               <div id="box-6" class="box">
               <div id="box-6" class="box">
                 <img id="image-6" src="https://static.igem.org/mediawiki/2013/c/c2/MOP-ICO-Dundee.jpg" style="width:220px;height:220px;"/>
                 <img id="image-6" src="https://static.igem.org/mediawiki/2013/c/c2/MOP-ICO-Dundee.jpg" style="width:220px;height:220px;"/>
               <span class="caption scale-caption" style="text-align:justify">
               <span class="caption scale-caption" style="text-align:justify">
-
                           <p><b style="font-size:16px;">Mop</b><br><br> Using <i>B. subtilis</i> and <i>E. coli</i> as chassis to express PP1. This will act as a molecular “mop”.</p>
+
                           <p><b style="font-size:16px">Mop</b><br><br> Mopping up a toxin (microcystin) by engineering a bacterium to produce the human PP1 protein, the protein to which microcystin binds.</p>
                 </span>
                 </span>
               </div>
               </div>
Line 70: Line 79:
       </div>
       </div>
-
       <div class="span3">
+
       <div class="span3" style="height:275px">
           <div id="mainwrapper">
           <div id="mainwrapper">
         <a href="https://2013.igem.org/Team:Dundee/Project/Detector">
         <a href="https://2013.igem.org/Team:Dundee/Project/Detector">
Line 77: Line 86:
               <img id="image-6" src="https://static.igem.org/mediawiki/2013/c/c3/DETECTOR-ICO-Dundee.jpg" style="width:220px;height:220px;"/>
               <img id="image-6" src="https://static.igem.org/mediawiki/2013/c/c3/DETECTOR-ICO-Dundee.jpg" style="width:220px;height:220px;"/>
               <span class="caption scale-caption" style="text-align:justify">
               <span class="caption scale-caption" style="text-align:justify">
-
                           <p><b style="font-size:16px;">Detector</b><br><br> Engineering the EnvZ and PrkC systems to express GFP or trigger germination in the presence of microcystin.</p>
+
                           <p><b style="font-size:16px;">Detector</b><br><br> Detecting microcystin by manipulation of the <i>E. coli</i> osmoregulator EnvZ.</p>
               </span>
               </span>
             </div>
             </div>
Line 83: Line 92:
         </div>
         </div>
-
   
+
       <div class="span3" style="height:275px">
-
       <div class="span3">
+
         <div id="mainwrapper">
         <div id="mainwrapper">
-
         <a href="https://2013.igem.org/Team:Dundee/Project/Moptopus">
+
         <a href="https://2013.igem.org/Team:Dundee/Project/SoftwareTheory">
                   <!-- Image Caption 6 -->
                   <!-- Image Caption 6 -->
             <div id="box-6" class="box">
             <div id="box-6" class="box">
               <img id="image-6" src="https://static.igem.org/mediawiki/2013/9/9f/MOPTOPUS-ICO-Dundee.jpg" style="width:220px;height:220px;"/>
               <img id="image-6" src="https://static.igem.org/mediawiki/2013/9/9f/MOPTOPUS-ICO-Dundee.jpg" style="width:220px;height:220px;"/>
               <span class="caption scale-caption" style="text-align:justify">
               <span class="caption scale-caption" style="text-align:justify">
-
                           <p><b style="font-size:16px;">Moptopus</b><br><br>  An electronic sensing device which detects and monitors the state of a freshwater system. It will allow us to predict the likelihood of algal blooms.</p>
+
                           <p><b style="font-size:16px;">Moptopus</b><br><br>  An electronic sensing device that provides a platform for toxin detection. It relates a range of environmental conditions to algal bloom formation and toxicity.</p>
               </span>
               </span>
             </div>
             </div>
Line 97: Line 105:
         </div>
         </div>
-
 
+
       <div class="span3" style="height:275px">
-
 
+
-
 
+
-
       <div class="span3">
+
           <div id="mainwrapper">
           <div id="mainwrapper">
-
         <a href="https://2013.igem.org/Team:Dundee/Project/HumanPractice">
+
         <a href="https://2013.igem.org/Team:Dundee/HumanPractice">
                   <!-- Image Caption 6 -->
                   <!-- Image Caption 6 -->
             <div id="box-6" class="box">
             <div id="box-6" class="box">
Line 108: Line 113:
               <span class="caption scale-caption" style="text-align:justify">
               <span class="caption scale-caption" style="text-align:justify">
-
                           <p><b style="font-size:16px;">Human Practices</b><br><br>Current regulations of measuring water quality may not be appropriate. We organised a political campaign to ignite a nationwide debate.</p>
+
                           <p><b style="font-size:16px;">Human Practices</b><br><br>This project has been carried out in collaboration with the community. By informing, listening and responding to their input, our project is based around community defined need, and is not merely a technical exercise. </p>
               </span>
               </span>
             </div>
             </div>
           </div></a>
           </div></a>
         </div>
         </div>
-
 
       </div>
       </div>
       </div><!-- End Page Content -->
       </div><!-- End Page Content -->
 +
 +
      <!-- Le javascript
 +
    ================================================== -->
 +
    <!-- Placed at the end of the document so the pages load faster -->
 +
 +
    <!-- the neccessary javascript -->
 +
    <script src="http://code.jquery.com/jquery-latest.js"></script>
 +
    <script src="http://www.kyleharrison.co.uk/igem/js/bootstrap.min.js"></script>
 +
 +
      <div id="push"></div>
 +
    </div>
 +
 +
    <div id="footer">
 +
      <div class="container">
 +
        <p class="muted credit"> Created for <a href="https://igem.org/Main_Page">iGEM 2013</a> Dundee. Based upon <a href ="http://twitter.github.io/bootstrap/">Bootstrap</a> and <a href="http://jquery.com/">JQuery</a>. Design by <a href="http://www.kyleharrison.co.uk">Kyle Harrison </a>. </p>
 +
      </div>
 +
    </div>
 +
 +
   </body>
   </body>

Latest revision as of 23:35, 28 October 2013

iGEM Dundee 2013 · ToxiMop

Targeting a Deadly Toxin

Explosions in the population of cyanobacteria can produce toxic algal blooms. Microcystin-LR the most potent and common algal bloom toxin, binds Protein Phosphatase 1. The average cyanobacteria infested lake in America contains over 1000 times the Microcystin safe drinking water limit set by the World Health Organisation.

Concerned by a harmful algal bloom in the local community, we used synthetic biology to target the toxin. We exploited the mechanism of Microcystin's toxicity to develop our Mop; by expressing Protein Phosphatase 1 we can mop up Microcystin. The interaction was also the basis for developing a biological Detector. To deploy our Detector and to consider the root causes of algal blooms we created the electronic Moptopus. It sits on a lake and monitors conditions relevant to cyanobacterial growth to help predict future blooms.