Team:Dundee/Project/MathOverview

From 2013.igem.org

(Difference between revisions)
 
(45 intermediate revisions not shown)
Line 13: Line 13:
       <!-- Title End -->
       <!-- Title End -->
-
       <div class="row">
+
       <div class="row" style="text-align:justify">
       <!-- the main content -->  
       <!-- the main content -->  
         <div class="span6" style="text-align:justify">
         <div class="span6" style="text-align:justify">
-
        <h2 style="margin-top:-10px;"> Insight to the Mathematical World </h2>
+
 
-
         <p> Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum. </p>
+
         <p> The central aims of the Dundee iGEM Dry Team were to (i) underpin and help direct the experimental programme and (ii) design tools to allow the general public to interact with the project. Modelling tools included population dynamics, geometric arguments, ordinary differential equations and stochastic simulation algorithms. Using these tools, we covered aspects of the project across multiple spatial scales, ranging from  the determination of population growth within current detection window, through packing estimates for proteins on the membrane/in the periplasm to deterministic and stochastic models for PP1 production and export via the Tat pathway.<br><Br>
-
        <br>
+
         Key outputs used directly by the wet team were:  identification of the huge  fold increase in microsystin level  between sample time and  final result using current technology; PP1 maximum packing estimates for <i>E. coli</i> and <i>B. subtilis</i> supports the former as the team  chassis of choice; efficiency measure of the Tat pathway as a transporter of PP1 to the periplasm in <i>E. coli</i>;  PP1 export  bottle-necks identified  as key limiting factor  and  augmentation of TatB-C complexes targeted as the most efficient method to enhance  mop efficacy.  
-
         <p> Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum. </p>
+
 
 +
        </p>
           <!--
           <!--
         <br><br> <h3>The modelling of the ToxiMop project will have four main areas:</h3>
         <br><br> <h3>The modelling of the ToxiMop project will have four main areas:</h3>
Line 33: Line 34:
         <div class="span6">
         <div class="span6">
-
      <img id="image-6" style="width:600px;height:300px;margin-top:50px;"src="http://farm9.staticflickr.com/8404/8677750589_79cb31e6a1_z.jpg">
+
<center><iframe src="https://docs.google.com/presentation/d/1isJ1295-ruLBpLxtkStChEIzYYgbvujTuY-Xr2Cc3wQ/embed?start=false&loop=false&delayms=3000" frameborder="0" width="480" height="389" allowfullscreen="true" mozallowfullscreen="true" webkitallowfullscreen="true"></iframe></center>
           </div>
           </div>
-
      </div><!-- Row End -->
+
 
 +
          <div class="span12" style="text-align:justify"><p>The targeted modelling  work was essential for the development of our project as a whole, but the team also wanted to allow others to investigate, develop and test ideas related to our project and theirs too. We developed an interactive modelling tool based on NetLogo that allows the user to test a large variety of hypotheses connected to the production and export of PP1 and its function as a ToxiMop. This easy-to-use online programme gives instant visual as well as quantitative feedback to the user. </p></div>
 +
    </div><!-- Row End -->
 +
 
 +
 
 +
<p> If the presentation does not appear, refreshing the page will fix this. In compliance with the wiki freeze, Google Drive places an unalterable timestamp on the document. Access granted upon request as this requires a specific email address. To access : <a href="https://docs.google.com/presentation/d/1isJ1295-ruLBpLxtkStChEIzYYgbvujTuY-Xr2Cc3wQ/pub?start=false&loop=false&delayms=3000">Click here</a>
 +
<br><br>
 +
Presentation too small to read, Want it bigger? Simply click the button between the slide number and cog to make the presentation full screen.</p>
 +
 
 +
 
       <!-- Row two -->
       <!-- Row two -->
Line 42: Line 52:
         <div class="span6" style="text-align:justify">
         <div class="span6" style="text-align:justify">
-
           <h2 style="margin-top:-10px;"> Mop (Sensor) </h2>
+
           <h2 style="margin-top:-10px;"><a href="/Team:Dundee/Project/DetectionComparison">1.  Detection Time</a></h2>
-
           <p> The mop models will firstly incorporate the production and transportation of PP1 in both <em>E. coli</em> and <em>Bacillus subtilis</em>. It will then extend to the interaction of the engineered bacterium with microcystin in the mop application with simulations. </p>
+
           <p>The problem with current detection methods is the processing time between sampling and availability of results. Potentially, this could lead to significant increases in the microcystin concentrations  before action is taken. Therefore, an effective biological detector must reduce this detection time. </p>
-
        </div>
+
 
 +
          <a href="/Team:Dundee/Project/DetectionComparison"><img id="image-6" src="https://static.igem.org/mediawiki/2013/f/fe/Detectiontime.jpg" style="height:300px;width:100%"></a>
 +
          </div>
         <div class="span6" style="text-align:justify">
         <div class="span6" style="text-align:justify">
-
           <h2 style="margin-top:-10px;"> Detector</h2>
+
           <h2 style="margin-top:-10px;"><a href="/Team:Dundee/Project/PP1Capacities">2.  PP1 Packing </a></h2>
-
           <p>  
+
           <p> The capacity of <i>E. coli</i> and <i>B. subtilis</i> to pack PP1 was  investigated in order to determine which chassis could  maximally hold the greatest number of PP1 molecules. This analysis indicated that <i>E. coli</i> has the greater potential to be a more efficient mop than <i>B. subtilis</i>. </p>
-
            The fine details of the detector models are to be confirmed following further research.</p>
+
-
        </div>
+
-
      </div>
+
-
        <div class="row">
+
          <a href="/Team:Dundee/Project/PP1Capacities"><img id="image-6" src="https://static.igem.org/mediawiki/2013/a/aa/Capacities.jpg"></a>
-
      <!-- the main content -->  
+
          </div>
 +
  </div><!-- Row End -->
-
         <div class="span6">
+
 
-
           <img id="image-6" src="http://farm6.staticflickr.com/5485/9547053710_3abaed2f46_o.png">
+
    <div class="row">
 +
         <div class="span6" style="text-align:justify">
 +
           <h2 style="margin-top:-10px;"><a href="/Team:Dundee/Project/NetlogoDoc">3. Mop Simulation </a></h2>
 +
          <p>We developed  models and visualisation tools allowing the biological processes that  take place in the ToxiMop bacteria to be investigated by  other  users. Dynamic alteration of key properties of the transport mechanisms provides instant feedback, allowing analysis of the concomitant effects and predictions to be tested.
 +
          </p>
 +
 
 +
          <a href="/Team:Dundee/Project/NetlogoDoc"><img id="image-6" src="https://static.igem.org/mediawiki/2013/3/34/NetL.jpg" style="height:300px;width:100%"></a>
           </div>
           </div>
-
         <div class="span6">
+
 
-
           <img id="image-6" src="http://placehold.it/600x300/C6E546/000000&text=Detector Image">
+
         <div class="span6" style="text-align:justify">
 +
           <h2 style="margin-top:-10px;"><a href="/Team:Dundee/Project/ProductionExport">4. Production & Export</a></h2>
 +
          <p>We developed a model to help us predict the number of PP1 that could be produced and then  transported into the periplasm of our ToxiMop cells.  The model  pinpointed  the cause of  inefficiencies in  our prototype  ToxiMop  and identified  how its functionality could be  improved.</p>
 +
 
 +
          <a href="/Team:Dundee/Project/ProductionExport"><img id="image-6" src="https://static.igem.org/mediawiki/2013/thumb/4/4c/TatBC-A-Overview.jpg/800px-TatBC-A-Overview.jpg"></a>
           </div>
           </div>
       </div><!-- Row End -->
       </div><!-- Row End -->
 +
   
 +
      <!-- the main content -->
 +
 +
       
 +
 
       <!-- Row two -->
       <!-- Row two -->
-
      <div class="row" style="margin-top:20px;">
+
   
-
        <div class="span6" style="text-align:justify">
 
-
          <h2 style="margin-top:-10px;"> Algae/Microcystin </h2>
 
-
          <p>
 
-
          We aim to produce some sort of simulation to help identify the issues of 24 hr detection systems against our planned machine.
 
-
          </p>
 
-
      </div>
 
-
 
-
        <div class="span6" style="text-align:justify">
 
-
          <h2 style="margin-top:-10px;"> Predictive</h2>
 
-
          <p>
 
-
            Develop a predictive model to be used in conjunction with octopus detecting machine for ToxiTweet. Octopus detecting machine modelling.</p>
 
-
        </div>
 
-
      </div>
 
-
      <div class="row">
 
       <!-- the main content -->  
       <!-- the main content -->  
-
        <div class="span6">
+
     
-
          <img id="image-6" src="http://farm3.staticflickr.com/2860/9544440899_c98745c0e9_o.png">
+
     
-
          </div>
+
 
-
 
+
-
        <div class="span6">
+
-
          <img id="image-6" src="http://placehold.it/600x300/EB3C8B/000000&text=Predictive">
+
-
          </div>
+
-
      </div><!-- Row End -->
+

Latest revision as of 02:06, 29 October 2013

iGEM Dundee 2013 · ToxiMop

The central aims of the Dundee iGEM Dry Team were to (i) underpin and help direct the experimental programme and (ii) design tools to allow the general public to interact with the project. Modelling tools included population dynamics, geometric arguments, ordinary differential equations and stochastic simulation algorithms. Using these tools, we covered aspects of the project across multiple spatial scales, ranging from the determination of population growth within current detection window, through packing estimates for proteins on the membrane/in the periplasm to deterministic and stochastic models for PP1 production and export via the Tat pathway.

Key outputs used directly by the wet team were: identification of the huge fold increase in microsystin level between sample time and final result using current technology; PP1 maximum packing estimates for E. coli and B. subtilis supports the former as the team chassis of choice; efficiency measure of the Tat pathway as a transporter of PP1 to the periplasm in E. coli; PP1 export bottle-necks identified as key limiting factor and augmentation of TatB-C complexes targeted as the most efficient method to enhance mop efficacy.


The targeted modelling work was essential for the development of our project as a whole, but the team also wanted to allow others to investigate, develop and test ideas related to our project and theirs too. We developed an interactive modelling tool based on NetLogo that allows the user to test a large variety of hypotheses connected to the production and export of PP1 and its function as a ToxiMop. This easy-to-use online programme gives instant visual as well as quantitative feedback to the user.

If the presentation does not appear, refreshing the page will fix this. In compliance with the wiki freeze, Google Drive places an unalterable timestamp on the document. Access granted upon request as this requires a specific email address. To access : Click here

Presentation too small to read, Want it bigger? Simply click the button between the slide number and cog to make the presentation full screen.

1. Detection Time

The problem with current detection methods is the processing time between sampling and availability of results. Potentially, this could lead to significant increases in the microcystin concentrations before action is taken. Therefore, an effective biological detector must reduce this detection time.

2. PP1 Packing

The capacity of E. coli and B. subtilis to pack PP1 was investigated in order to determine which chassis could maximally hold the greatest number of PP1 molecules. This analysis indicated that E. coli has the greater potential to be a more efficient mop than B. subtilis.

3. Mop Simulation

We developed models and visualisation tools allowing the biological processes that take place in the ToxiMop bacteria to be investigated by other users. Dynamic alteration of key properties of the transport mechanisms provides instant feedback, allowing analysis of the concomitant effects and predictions to be tested.

4. Production & Export

We developed a model to help us predict the number of PP1 that could be produced and then transported into the periplasm of our ToxiMop cells. The model pinpointed the cause of inefficiencies in our prototype ToxiMop and identified how its functionality could be improved.