Team:Peking/Project/BioSensors/DmpR

From 2013.igem.org

(Difference between revisions)
Line 340: Line 340:
<p id="ContentDmpR1">
<p id="ContentDmpR1">
-
DmpR from <I>Pseudomonas sp</I>.CF600<a href="#ReferenceDmpR"><sup>[2][4-8]</sup></a> is a <code>&sigma;<sup>54</sup></code>-dependent transcriptional factor that tightly controls the expression of the <I>dmp </I> operon(<I>dmpKLMNOPQBCDEFGHI</I>) (<B>Fig.1</B> ).This operon carries genes encoding enzymes for the degradation of (methyl)phenols to pyruvate and acetyl-CoA<a href="#ReferenceDmpR"><sup>[1]</sup></a> (<B>Fig.2</B>).
+
DmpR from <I>Pseudomonas sp</I>.CF600<a href="#ReferenceDmpR"><sup>[1-6]</sup></a> is a <code>&sigma;<sup>54</sup></code>-dependent transcriptional factor that tightly controls the expression of the <I>dmp </I> operon(<I>dmpKLMNOPQBCDEFGHI</I>) (<B>Fig.1</B> ).This operon carries genes encoding enzymes for the degradation of (methyl)phenols to pyruvate and acetyl-CoA<a href="#ReferenceDmpR"><sup>[7]</sup></a> (<B>Fig.2</B>).
</p>
</p>
Line 350: Line 350:
<p id="ContentDmpR3">
<p id="ContentDmpR3">
-
DmpR protein consists of four domains (<B>Fig.4</B>): A domain is the signal reception domain, which undergoes conformational change when exposed to proper inducers, including phenol, 2-chlorophenol, 2,4-dichlorophenol, methyl-phenols and other substituted phenols <a href="#ReferenceDmpR"><sup>[3][5]</sup></a>.B domain is a linker, mutations of which change the interaction between A domain and C domain, regulating the relative spatial position of them. C domain is the transcriptional activation domain. D domain contains a helix-turn-helix motif, which is capable of binding DNA sequence on <I>Po</I> promoter <a href="#ReferenceDmpR"><sup>[2]</sup></a>.
+
DmpR protein consists of four domains (<B>Fig.4</B>): A domain is the signal reception domain, which undergoes conformational change when exposed to proper inducers, including phenol, 2-chlorophenol, 2,4-dichlorophenol, methyl-phenols and other substituted phenols <a href="#ReferenceDmpR"><sup>[3][8]</sup></a>.B domain is a linker, mutations of which change the interaction between A domain and C domain, regulating the relative spatial position of them. C domain is the transcriptional activation domain. D domain contains a helix-turn-helix motif, which is capable of binding DNA sequence on <I>Po</I> promoter <a href="#ReferenceDmpR"><sup>[1]</sup></a>.
</p>
</p>
Line 409: Line 409:
<p id="FigureDmpR5">
<p id="FigureDmpR5">
-
<B>Figure 5.</B> Schematic mode of the activation of DmpR regulator (A) The inactive regular dimer binds to its inducer, which results in a protein conformation change. (B)Binding of ATP triggers multimerization of the dimers to a hexamer (or haptamer).(C) ATP hydrolysis coupled to correct interaction with RNA polymerase triggers transcription activation. (D) Dissociation of the hexamer to a dimer on ATP hydrolysis and dissociation of the inducer <a href="#ReferenceDmpR"><sup>[8]</sup></a>.
+
<B>Figure 5.</B> Schematic mode of the activation of DmpR regulator (A) The inactive regular dimer binds to its inducer, which results in a protein conformation change. (B)Binding of ATP triggers multimerization of the dimers to a hexamer (or haptamer).(C) ATP hydrolysis coupled to correct interaction with RNA polymerase triggers transcription activation. (D) Dissociation of the hexamer to a dimer on ATP hydrolysis and dissociation of the inducer <a href="#ReferenceDmpR"><sup>[6]</sup></a>.
</p>
</p>
Line 436: Line 436:
<B>REFERENCE:</B>
<B>REFERENCE:</B>
<br/>
<br/>
-
[1]. SHINGLER, V.; POWLOWSKI, J.; MARKLUND, U. Nucleotide sequence and functional analysis of the complete phenol/3, 4-dimethylphenol catabolic pathway of <I>Pseudomonas sp</I>. strain CF600. <I>Journal of bacteriology</I>, (1992), 174.3: 711-724.
+
 
 +
[1]. SHINGLER, V.; PAVEL, H. Direct regulation of the ATPase activity of the transcriptional activator DmpR by aromatic compounds. <I>Molecular microbiology</I>, (1995), 17.3: 505-513.  
<br/>
<br/>
-
[2]. SHINGLER, V.; PAVEL, H. Direct regulation of the ATPase activity of the transcriptional activator DmpR by aromatic compounds. <I>Molecular microbiology</I>, (1995), 17.3: 505-513.  
+
[2]. SHINGLER, Victoria; MOORE, Terry. Sensing of aromatic compounds by the DmpR transcriptional activator of phenol-catabolizing <I>Pseudomonas sp.</I> strain CF600. <I>Journal of bacteriology</I>, (1994), 176.6: 1555-1560.
<br/>
<br/>
-
[3]. GUPTA, Saurabh, et al. An Effective Strategy for a Whole-Cell Biosensor Based on Putative Effector Interaction Site of the Regulatory DmpR Protein. <I>PloS one</I>, (2012), 7.8: e43527.  
+
[3]. SZE, Chun Chau; LAURIE, Andrew D.; SHINGLER, Victoria. In Vivo and In Vitro Effects of Integration Host Factor at the DmpR-Regulated <code>&sigma;<sup>54</sup></code>-Dependent Po Promoter. <I>Journal of bacteriology</I>, (2001), 183.9: 2842-2851.
<br/>
<br/>
-
[4]. SHINGLER, Victoria; MOORE, Terry. Sensing of aromatic compounds by the DmpR transcriptional activator of phenol-catabolizing <I>Pseudomonas sp.</I> strain CF600. <I>Journal of bacteriology</I>, (1994), 176.6: 1555-1560.
+
[4]. SARAND, Inga, et al. Role of the DmpR-mediated regulatory circuit in bacterial biodegradation properties in methylphenol-amended soils. <I>Applied and environmental microbiology</I>, (2001), 67.1: 162-171.  
<br/>
<br/>
-
[5]. SZE, Chun Chau; LAURIE, Andrew D.; SHINGLER, Victoria. In Vivo and In Vitro Effects of Integration Host Factor at the DmpR-Regulated <code>&sigma;<sup>54</sup></code>-Dependent Po Promoter. <I>Journal of bacteriology</I>, (2001), 183.9: 2842-2851.
+
[5].WISE, Arlene A.; KUSKE, Cheryl R. Generation of novel bacterial regulatory proteins that detect priority pollutant phenols. <I>Applied and environmental microbiology</I>, (2000), 66.1: 163-169.  
<br/>
<br/>
-
[6]. SARAND, Inga, et al. Role of the DmpR-mediated regulatory circuit in bacterial biodegradation properties in methylphenol-amended soils. <I>Applied and environmental microbiology</I>, (2001), 67.1: 162-171.  
+
[6]. TROPEL, David; VAN DER MEER, Jan Roelof. Bacterial transcriptional regulators for degradation pathways of aromatic compounds. <I>Microbiology and Molecular Biology Reviews</I>, (2004), 68.3: 474-500.
 +
</br>
 +
[7]. SHINGLER, V.; POWLOWSKI, J.; MARKLUND, U. Nucleotide sequence and functional analysis of the complete phenol/3, 4-dimethylphenol catabolic pathway of <I>Pseudomonas sp</I>. strain CF600. <I>Journal of bacteriology</I>, (1992), 174.3: 711-724.
<br/>
<br/>
-
[7].WISE, Arlene A.; KUSKE, Cheryl R. Generation of novel bacterial regulatory proteins that detect priority pollutant phenols. <I>Applied and environmental microbiology</I>, (2000), 66.1: 163-169.  
+
[8]. GUPTA, Saurabh, et al. An Effective Strategy for a Whole-Cell Biosensor Based on Putative Effector Interaction Site of the Regulatory DmpR Protein. <I>PloS one</I>, (2012), 7.8: e43527.  
<br/>
<br/>
-
[8]. TROPEL, David; VAN DER MEER, Jan Roelof. Bacterial transcriptional regulators for degradation pathways of aromatic compounds. <I>Microbiology and Molecular Biology Reviews</I>, (2004), 68.3: 474-500.
+
 
 +
 
</p>
</p>

Revision as of 16:38, 26 September 2013

Biosensors

DmpR

Mechanism

Build Our Own Sensor!

DmpR from Pseudomonas sp.CF600[1-6] is a σ54-dependent transcriptional factor that tightly controls the expression of the dmp operon(dmpKLMNOPQBCDEFGHI) (Fig.1 ).This operon carries genes encoding enzymes for the degradation of (methyl)phenols to pyruvate and acetyl-CoA[7] (Fig.2).

DmpR is a transcriptional activator of Po promoter which controls ON/OFF expression of dmp operon. It binds to Po promoter as hexamer on two diverted UAS sequence (Upstream Activating Sequence). The transcription initiation of dmp operon also requires IHF factor (Integration Host Factor), which has two binding sites on Po promoter and enhance the transcription efficiency (Fig.3).

DmpR protein consists of four domains (Fig.4): A domain is the signal reception domain, which undergoes conformational change when exposed to proper inducers, including phenol, 2-chlorophenol, 2,4-dichlorophenol, methyl-phenols and other substituted phenols [3][8].B domain is a linker, mutations of which change the interaction between A domain and C domain, regulating the relative spatial position of them. C domain is the transcriptional activation domain. D domain contains a helix-turn-helix motif, which is capable of binding DNA sequence on Po promoter [1].

The mechanism of Po promoter activation consists of four steps, DmpR dimer formation, DmpR hexamer formation, DNA bending and recruit of RNAP (Fig.5). With the cooperation of IHF, transcription from Po promoter initiates.

A random mutation of DmpR A domain with capacity to detect phenolic molecules was selected. People found that the mutant Q10R strongly enhanced the response to phenol and substituted ones, and mutant D116V suggested that the aspartate at position 116 acted to restrict the effector range of wild-type DmpR.

A lot of work have been done about DmpR, but there is no general method for testing the induction ratio, and different works obtained different induction ratio. Our team obtained DmpR from Professor V. Shingler and the synthesized promotor Po sequence from GeneScript. Plasmid containing Pr-DmpR was double transformed with plasmid containing the inducible promoter Po and reporter gene sfGFP (Fig.6). Similar to other sensors, plasmid with RBS BBa_B0032 before sfGFP was chosen for its relatively higher induction ratio during primary test for RBS library (data not shown) (Fig.6).

We tested the DmpR using almost every protocol mentioned in the previous work and our general method(For more details about these three protocols, Click Here).

We then tested the ON-OFF ratio of all of the 78 aromatics using the Test Protocol 3 . DmpR stain showed low basal expression level of sfGFP and 7 compounds showed observably induction ratio (>2) (Fig.8), namely Phl, 2-MePhl, 2-ClPhl, 3-ClPhl, Cat, 4-NtPhl and 2-APhl (To see more information of the compounds, Click Here).

After finding the compounds with showed observably induction ratio, we tested the dose response curve of each compound via Test Protocol 3 (Fig.9).

In summary, we found a robust and convenient protocol to test Dmp and DmpR functions as a robust sensor for phenol and its derivative.

Figure 1.Dmp operon. Dmp operon carries genes encoding enzymes for the degradation of (methyl-)phenols to pyruvate and acetyl-CoA,the intermediates of TCA Cycle. The operon is positively controlled by dmpR gene product,resulting in expression of catabolic enzymes when inducer like phenol is present.

Figure 2. The catabolic pathway of phenol controlled by dmp operon.Metabolic enzymes along the pathway are represented in numbers.1 through 8:1,phenol hydroxylase(PH);2,catechol 2,3-dioxygenase(C23O);3,2-hydroxymuconic semialdehyde hydrolase(2HMSH);4,2-hydroxymuconic semialdehyde dehydrogenase(2HMSD);5,4-oxalocrotonate isomerase (4OI);6,4-oxalocrotonate decarboxylase(4OD);7,2-oxopent-4-cnoate hydeatase(OEH);8,4-hydroxy-2-2oxovalerate aldolase(HOA).

Figure 3. Po promoter structure. The UAS of this promoter marked in green is combined of two parts in contrast direction to which DmpR binds. The box with yellow background represents IHF binding sites. The box with pink background represents σ54 binding site with -24 region and -12 region marked in red. The G with right angle represents +1 site.

Figure 4. Structure of DmpR protein. From N terminal to C terminal are domain A, domain B, domain C, domain D.

Figure 5. Schematic mode of the activation of DmpR regulator (A) The inactive regular dimer binds to its inducer, which results in a protein conformation change. (B)Binding of ATP triggers multimerization of the dimers to a hexamer (or haptamer).(C) ATP hydrolysis coupled to correct interaction with RNA polymerase triggers transcription activation. (D) Dissociation of the hexamer to a dimer on ATP hydrolysis and dissociation of the inducer [6].

Figure 6. The structure of the DmpR biosensor circuit. DmpR is constitutively expressed and functions to regulate the transcription of sfGFP gene via promoter Po. As for the RBS of sfGFP, BBa_B0032 was chosen due to its better performance compared to RBS of other transcriptional strengths.

Figure 7. ON/OFF test to evaluate the induction ratios of all aromatic compounds in the aromatics spectrum. (For the full names of the compounds, Click Here ). (a) The induction ratioS of various aromatic species. DmpR could respond to 7 out of 78 aromatics with the induction ratio over 2. (b) The aromatics-sensing profile of DmpR biosensor.The aromatic species that can elicit strong responses of DmpR biosensor are highlighted in cyan in the aromatics spectrum. The structure formula of typical inducer is also listed around the spectrum. The induction ratio was calculated by dividing the fluorescence intensity of biosensor exposed to object inducers by the basal fluorescence intensity of the biosensor itself.

Figure 8. Dose response curves of DmpR biosensor. Dose response curves for phenol, its homologs and derivatives.The induction ratio was calculated by dividing the fluorescence intensity of biosensor exposed to inducers by the basal fluorescence intensity of the biosensor. For the full names of the compounds,For the full names of the compounds, Click Here .

REFERENCE:
[1]. SHINGLER, V.; PAVEL, H. Direct regulation of the ATPase activity of the transcriptional activator DmpR by aromatic compounds. Molecular microbiology, (1995), 17.3: 505-513.
[2]. SHINGLER, Victoria; MOORE, Terry. Sensing of aromatic compounds by the DmpR transcriptional activator of phenol-catabolizing Pseudomonas sp. strain CF600. Journal of bacteriology, (1994), 176.6: 1555-1560.
[3]. SZE, Chun Chau; LAURIE, Andrew D.; SHINGLER, Victoria. In Vivo and In Vitro Effects of Integration Host Factor at the DmpR-Regulated σ54-Dependent Po Promoter. Journal of bacteriology, (2001), 183.9: 2842-2851.
[4]. SARAND, Inga, et al. Role of the DmpR-mediated regulatory circuit in bacterial biodegradation properties in methylphenol-amended soils. Applied and environmental microbiology, (2001), 67.1: 162-171.
[5].WISE, Arlene A.; KUSKE, Cheryl R. Generation of novel bacterial regulatory proteins that detect priority pollutant phenols. Applied and environmental microbiology, (2000), 66.1: 163-169.
[6]. TROPEL, David; VAN DER MEER, Jan Roelof. Bacterial transcriptional regulators for degradation pathways of aromatic compounds. Microbiology and Molecular Biology Reviews, (2004), 68.3: 474-500.
[7]. SHINGLER, V.; POWLOWSKI, J.; MARKLUND, U. Nucleotide sequence and functional analysis of the complete phenol/3, 4-dimethylphenol catabolic pathway of Pseudomonas sp. strain CF600. Journal of bacteriology, (1992), 174.3: 711-724.
[8]. GUPTA, Saurabh, et al. An Effective Strategy for a Whole-Cell Biosensor Based on Putative Effector Interaction Site of the Regulatory DmpR Protein. PloS one, (2012), 7.8: e43527.