Team:UNITN-Trento/Project/Methyl Salicylate

From 2013.igem.org

(Difference between revisions)
Line 10: Line 10:
<span class="tn-title">Results - Methyl Salicylate </span>
<span class="tn-title">Results - Methyl Salicylate </span>
<p>
<p>
-
There were not many candidates to choose from. It was difficult to find a volatile molecule that could be enzymatically produced by a bacterium and also demonstrated to be an efficient ripening inhbitor. After a long search we chose methyl salicylate (MeSA). Previous publications suggested that MeSA could inhibit the ripening of kiwifruit and tomato at a concentration of XX mM. (REF)
+
It was difficult to find a volatile molecule that could be enzymatically produced by a bacterium and also demonstrated to be an efficient ripening inhbitor. There were not many candidates to choose from and after a long search we chose methyl salicylate (MeSA). Previous publications suggested that MeSA could inhibit the ripening of either tomatos, at a concentration of 0.5 mM <span class="tn-ref"> (The dual effects of methyl salicylate on ripening and expression of ethylene biosynthetic genes in tomato fruit. Ding, C. and Wang, Y. 164, 2003, Plant Science, pp. 589-596.) </span) and kiwifruit <span class="tn-ref"> (Aghdam, M., et al. Methyl Salicylate Affects the Quality of Hayward Kiwifruits during. Journal of Agricultural Science. June 2011, Vol. 3, 2, pp. 149-156.) </span)
</p>
</p>
<p>
<p>
Line 16: Line 16:
</p>
</p>
-
<img class= "no-border" img id="mesapath" style=" margin-bottom: 1em;" src="https://static.igem.org/mediawiki/2013/d/dd/Tn-2013_MeSA_path.jpg" />
+
< img id="mesapath" style=" margin-bottom: 1em;" src="https://static.igem.org/mediawiki/2013/d/dd/Tn-2013_MeSA_path.jpg" />
<span class="tn-caption "></span>
<span class="tn-caption "></span>

Revision as of 21:27, 28 September 2013

Results - Methyl Salicylate

It was difficult to find a volatile molecule that could be enzymatically produced by a bacterium and also demonstrated to be an efficient ripening inhbitor. There were not many candidates to choose from and after a long search we chose methyl salicylate (MeSA). Previous publications suggested that MeSA could inhibit the ripening of either tomatos, at a concentration of 0.5 mM (The dual effects of methyl salicylate on ripening and expression of ethylene biosynthetic genes in tomato fruit. Ding, C. and Wang, Y. 164, 2003, Plant Science, pp. 589-596.) (Aghdam, M., et al. Methyl Salicylate Affects the Quality of Hayward Kiwifruits during. Journal of Agricultural Science. June 2011, Vol. 3, 2, pp. 149-156.)

Fortunately many of the needed parts were already available because of the work of the MIT iGEM 2006 team (Eau de Coli).

< img id="mesapath" style=" margin-bottom: 1em;" src="https://static.igem.org/mediawiki/2013/d/dd/Tn-2013_MeSA_path.jpg" />

We modified and improved these parts and resubmitted them to the registry, as they were not available in pSB1C3.

MeSA detection

To have a quantitative analysis we used a Finnigan Trace GC ULTRA with a flame ionization detector (FID) that allowed us to detect ions formed during MeSA combustion in a hydrogen flame. The generation of this ions is proportional to MeSA concentration in the sample stream. A calibration curve was initially created using samples with a well known pure MeSA concentration (0 mM, 0.2 mM, 0.5 mM, 1.0 mM, 2 mM).

[http://2013.igem.org/wiki/index.php?title=Team:UNITN-Trento/Project/Methyl_Salicylate&action=edit Edit this page] | Main Page