Team:UNITN-Trento/Project/Ethylene
From 2013.igem.org
Line 93: | Line 93: | ||
<img src="https://static.igem.org/mediawiki/2013/8/85/Tn-2013-project_ethylene-BBa_K1065001.jpg"/> | <img src="https://static.igem.org/mediawiki/2013/8/85/Tn-2013-project_ethylene-BBa_K1065001.jpg"/> | ||
- | + | <span class="quote"> | |
- | + | <a href="https://2013.igem.org/Team:UNITN-Trento/Fruit_Info">Do you know how plants produce ethylene?</a> | |
+ | </span> | ||
+ | <span class="quote"> | ||
+ | <a href="https://2013.igem.org/Team:UNITN-Trento/Fruit_Info">Do you know that ethylene is used commercially to ripen some fruits before they enter the market?</a> | ||
+ | </span> | ||
</div> | </div> | ||
</div> | </div> | ||
<!--end content--></html>|<html>https://static.igem.org/mediawiki/2013/3/3d/Tn-2013-headerbg-Sfondowm.jpg</html>|<html>https://static.igem.org/mediawiki/2013/1/10/Tn-2013-headerbgSfondowm_or.jpg</html>}} | <!--end content--></html>|<html>https://static.igem.org/mediawiki/2013/3/3d/Tn-2013-headerbg-Sfondowm.jpg</html>|<html>https://static.igem.org/mediawiki/2013/1/10/Tn-2013-headerbgSfondowm_or.jpg</html>}} |
Revision as of 19:17, 16 September 2013
Results - Ethylene
EFE (Ethylene Forming Enzyme - 2-Oxoglutarate Oxygenase/Decarboxylase) is our keyplayer in triggering fruit ripening. It catalyzes ethylene synthesis from 2-Oxoglutarate, a TCA cycle intemediate molecule. We characterized this gene in two chassis: E. coli and B. subtilis, using different contstructs that we designed.
E. coli
In E. coli, EFE-catalyzed ethylene production was characterized using BBa_K1065001, which is a composed part with EFE under the control of an AraC-pBAD promoter.
1. Toxicity test
A toxicity test was performed inducing EFE expression with 5 mM arabinose. The growth curve was then compared to a not-induced sample.
As expected, induced samples showed a decreased growth rate.
2. Ethylene detection
Then, ethylene was detected using a Micro Gas Chromatograph (see the protocol page for the adopted methodology). The instrument was calibrated using two different air mixtures with well-defined quantities of each molecule.
The chromatogram clearly shows the presence of a peak corresponding to ethylene; the peak integral was converted to ppm.
Sample | Ethylene detected |
---|---|
Not induced | 0 ± 15 ppm |
Induced V = 1.5 ml | 61 ± 15 ppm |
Induced V = 3 ml | 101 ± 15 ppm |
3. Kinetic assay for ethylene production
We performed a kinetic assay in order to analyze ethylene production over time (see the protocol page for the adopted method).
Figure 3 shows how inducing the culture at O.D.600 equal to 0.8 a.u. caused a 2-fold increase in ethylene production.