Team:UNITN-Trento/Project/Ethylene
From 2013.igem.org
Cridelbianco (Talk | contribs) |
|||
Line 13: | Line 13: | ||
<h1>Results - Ethylene</h1> | <h1>Results - Ethylene</h1> | ||
<p> | <p> | ||
- | EFE (Ethylene Forming Enzyme - 2-Oxoglutarate Oxygenase/Decarboxylase) is our keyplayer in triggering fruit ripening. It catalyzes ethylene synthesis from 2-Oxoglutarate, a TCA cycle intemediate molecule | + | EFE (Ethylene Forming Enzyme - 2-Oxoglutarate Oxygenase/Decarboxylase) is our keyplayer in triggering fruit ripening. It catalyzes ethylene synthesis from 2-Oxoglutarate, a TCA cycle intemediate molecule. |
</p> | </p> | ||
<img style="box-shadow:none; margin-bottom:-1em;"src="https://static.igem.org/mediawiki/2013/f/f8/Tn-2013-project_ethylene-Eth_path.jpg" alt="Ethylene pathway" /> | <img style="box-shadow:none; margin-bottom:-1em;"src="https://static.igem.org/mediawiki/2013/f/f8/Tn-2013-project_ethylene-Eth_path.jpg" alt="Ethylene pathway" /> | ||
+ | We characterized this gene in two chassis: <i>E. coli</i> and <i>B. subtilis</i>, using different contstructs that we designed. | ||
+ | </p> | ||
- | <h2>E. coli</h2> | + | <h2> ''EFE in E. coli''</h2> |
<img src="https://static.igem.org/mediawiki/2013/9/9b/Tn-2013-project_ethylene-BBa_K1065000.jpg" alt="E. coli EFE parts"/><br/> | <img src="https://static.igem.org/mediawiki/2013/9/9b/Tn-2013-project_ethylene-BBa_K1065000.jpg" alt="E. coli EFE parts"/><br/> | ||
Line 27: | Line 29: | ||
<h3>1. Toxicity test</h3> | <h3>1. Toxicity test</h3> | ||
<p> | <p> | ||
- | A toxicity test was performed inducing EFE expression with 5 mM arabinose. The growth curve was then compared to a | + | A toxicity test was performed inducing EFE expression with 5 mM arabinose. The growth curve was then compared to a non-induced sample. |
</p> | </p> | ||
Line 41: | Line 43: | ||
<h3>2. Ethylene detection</h3> | <h3>2. Ethylene detection</h3> | ||
<p> | <p> | ||
- | + | Ethylene production was detected using a Micro Gas Chromatograph (see the <a href="https://2013.igem.org/Team:UNITN-Trento/Protocols#ethylene-detection-assay">protocol page</a> for the adopted methodology). The instrument was calibrated using two different air mixtures with well-defined quantities of each molecule (carbon dioxide, oxygen and ethylene). | |
</p> | </p> | ||
<img src="https://static.igem.org/mediawiki/2013/c/cf/Tn-2013_EFE_chromatogram.jpg" alt="Ethylene chromatogram" /> | <img src="https://static.igem.org/mediawiki/2013/c/cf/Tn-2013_EFE_chromatogram.jpg" alt="Ethylene chromatogram" /> | ||
<span class="caption"> | <span class="caption"> | ||
- | <b>Fig. 2:</b> | + | <b>Fig. 2:</b> Ethylene production. Cells transformed with BBa_K1065001 were grown in a thermoshaker until an O.D. of 0.5, placed in hermetically closed vial with a rubber septum and induced with 5 mM Arabinose. Ethylene was measured after 4 hours of induction at 37 °C by connecting the vial to a Agilent Micro GC 3000. |
+ | |||
+ | |||
</span> | </span> | ||
<p> | <p> | ||
- | + | To quantify the amount of ethylene produced the peak integral was converted into ppm. | |
</p> | </p> | ||
Line 81: | Line 85: | ||
<img src="https://static.igem.org/mediawiki/2013/0/00/Tn-2013_kinetic_EFE_plot-2.png" alt="kinetic_EFE_plot" /> | <img src="https://static.igem.org/mediawiki/2013/0/00/Tn-2013_kinetic_EFE_plot-2.png" alt="kinetic_EFE_plot" /> | ||
<span class="caption"> | <span class="caption"> | ||
- | <b>Fig. 3:</b> ethylene production (ppm) over time (min) of cells induced at different O.D.600 and cultured | + | <b>Fig. 3:</b> ethylene production (ppm) over time (min) of cells transformed with BBa_K1065001 and induced with Arabinose at different O.D.600 and cultured in different conditions. |
</span> | </span> | ||
<p> | <p> | ||
- | Figure 3 shows | + | Figure 3 shows that induction of the culture at O.D.600 equal to 0.8 a.u. caused a 2-fold increase in ethylene production. |
</p> | </p> | ||
<div class="separator"></div> | <div class="separator"></div> | ||
<h2> | <h2> | ||
- | + | EFE under the control of a Blue light circuit in '''E. coli''' | |
</h2> | </h2> | ||
Line 96: | Line 100: | ||
<p> | <p> | ||
- | + | To build our final system we placed EFE under the control of a photoinducible circuit. We assembled the photoinducible circuit exploiting many subparts from different teams (Uppsala2011 and Berkeley 2006). The construct includes an inverter that allows ethylene production only in presence of light. | |
</p> | </p> | ||
Line 104: | Line 108: | ||
<p> | <p> | ||
- | We performed a kinetic assay in order to analyze ethylene production over time using (BBa_K1065XXX). | + | We performed a kinetic assay in order to analyze ethylene production over time using (BBa_K1065XXX). When the culture reached an OD of 0.7, it was placed in a hermetically closed vial and exposed to a blue light led (470 nm) while it was connected to the micro GC (see the protocol page for the adopted method). |
</p> | </p> | ||
<img src="https://static.igem.org/mediawiki/2013/2/28/Blue_light_EFE_kinetic.png" alt="EFE-blue_light_plot" /> | <img src="https://static.igem.org/mediawiki/2013/2/28/Blue_light_EFE_kinetic.png" alt="EFE-blue_light_plot" /> | ||
<span class="caption"> | <span class="caption"> | ||
- | <b>Fig. 4:</b> | + | <b>Fig. 4:</b> Ethylene production (ppm) upon photoinduction with a blue led light over time (min) of cells transformed with BBa_XX. |
</span> | </span> | ||
- | <h2>B. subtilis</h2> | + | <h2>EFE in B. subtilis</h2> |
<img src="https://static.igem.org/mediawiki/2013/8/85/Tn-2013-project_ethylene-BBa_K1065001.jpg"/> | <img src="https://static.igem.org/mediawiki/2013/8/85/Tn-2013-project_ethylene-BBa_K1065001.jpg"/> | ||
Revision as of 21:41, 18 September 2013
Results - Ethylene
EFE (Ethylene Forming Enzyme - 2-Oxoglutarate Oxygenase/Decarboxylase) is our keyplayer in triggering fruit ripening. It catalyzes ethylene synthesis from 2-Oxoglutarate, a TCA cycle intemediate molecule.
We characterized this gene in two chassis: E. coli and B. subtilis, using different contstructs that we designed.''EFE in E. coli''
In E. coli, EFE-catalyzed ethylene production was characterized using BBa_K1065001, which is a composed part with EFE under the control of an AraC-pBAD promoter.
1. Toxicity test
A toxicity test was performed inducing EFE expression with 5 mM arabinose. The growth curve was then compared to a non-induced sample.
As expected, induced samples showed a decreased growth rate.
2. Ethylene detection
Ethylene production was detected using a Micro Gas Chromatograph (see the protocol page for the adopted methodology). The instrument was calibrated using two different air mixtures with well-defined quantities of each molecule (carbon dioxide, oxygen and ethylene).
To quantify the amount of ethylene produced the peak integral was converted into ppm.
Sample | Ethylene detected |
---|---|
Not induced | 0 ± 15 ppm |
Induced V = 1.5 ml | 61 ± 15 ppm |
Induced V = 3 ml | 101 ± 15 ppm |
3. Kinetic assay for ethylene production
We performed a kinetic assay in order to analyze ethylene production over time (see the protocol page for the adopted method).
Figure 3 shows that induction of the culture at O.D.600 equal to 0.8 a.u. caused a 2-fold increase in ethylene production.
EFE under the control of a Blue light circuit in '''E. coli'''
To build our final system we placed EFE under the control of a photoinducible circuit. We assembled the photoinducible circuit exploiting many subparts from different teams (Uppsala2011 and Berkeley 2006). The construct includes an inverter that allows ethylene production only in presence of light.
Photoinduced ethylene production - kinetic assay
We performed a kinetic assay in order to analyze ethylene production over time using (BBa_K1065XXX). When the culture reached an OD of 0.7, it was placed in a hermetically closed vial and exposed to a blue light led (470 nm) while it was connected to the micro GC (see the protocol page for the adopted method).