Team:SydneyUni Australia/Modelling Intro

From 2013.igem.org

(Difference between revisions)
m
Line 6: Line 6:
A pharmacokinetic model was constructed in order to determine the intracellular concentration of the metabolites as a function of time and determine the rate at which DCA is removed from solution. The synthetic metabolic pathway involves four introduced enzymes which converts the substrate 1,2-dichloroethane (DCA) into the end product glycolate through 3 metabolic intermediates. The concentration of each metabolic species over time was modelled through a system of ordinary differential equations (ODE) where Michaelis-Menton (MM) equations were used to model the kinetics of each enzyme of our constructed metabolic pathway.  
A pharmacokinetic model was constructed in order to determine the intracellular concentration of the metabolites as a function of time and determine the rate at which DCA is removed from solution. The synthetic metabolic pathway involves four introduced enzymes which converts the substrate 1,2-dichloroethane (DCA) into the end product glycolate through 3 metabolic intermediates. The concentration of each metabolic species over time was modelled through a system of ordinary differential equations (ODE) where Michaelis-Menton (MM) equations were used to model the kinetics of each enzyme of our constructed metabolic pathway.  
-
[[File:SydneyUni2013_Model_Intro.png|center]]
 
{{Team:SydneyUni_Australia/Footer}}
{{Team:SydneyUni_Australia/Footer}}

Revision as of 08:50, 27 September 2013

SydneyUniversity Top Banner.jpg SydneyUniversity Bottom Banner.jpg

Introduction

A pharmacokinetic model was constructed in order to determine the intracellular concentration of the metabolites as a function of time and determine the rate at which DCA is removed from solution. The synthetic metabolic pathway involves four introduced enzymes which converts the substrate 1,2-dichloroethane (DCA) into the end product glycolate through 3 metabolic intermediates. The concentration of each metabolic species over time was modelled through a system of ordinary differential equations (ODE) where Michaelis-Menton (MM) equations were used to model the kinetics of each enzyme of our constructed metabolic pathway.


With thanks to: