Team:SCU China/Project

From 2013.igem.org

(Difference between revisions)
Line 28: Line 28:
|-
|-
-
|
+
|Sexual differentiation is the most common and natural phenomenon in multicellutar organism, Usually, two genders’ combination through fertilization is essential for their proliferation. However, in the most primitive organisms, no sexual differentiation existed. With the evolution from protist to metazoan such as animals, definite sexual differentiation came into being. So, there is a question that when and how sexual differentiation happened. The special F factor in E. coli enables its gene communication and determination of the sex what we defined as “female” and “male”. Though this kind of gene communication is not genuinely sexual differentiation, we could make a hypothesis that the F factor is the transitory stage to true sexual differentiation. So we want to imitate sexual differentiation in unicellular organism to help us understand the process of sexual differentiation. We believe that this imitation would be very interesting and attract more people to do related research.
-
== '''Overall project''' ==
+
-
 
+
-
Tell us more about your project. Give us background. Use this is the abstract of your project. Be descriptive but concise (1-2 paragraphs)
+
-
 
+
-
 
+
-
 
+
-
 
+
-
 
+
-
 
+
-
 
+
-
== Project Details==
+
-
 
+
-
 
+
-
 
+
-
 
+
-
 
+
-
=== Part 2 ===
+
-
 
+
-
 
+
-
 
+
-
 
+
-
 
+
-
=== The Experiments ===
+
-
 
+
-
 
+
-
 
+
-
 
+
-
=== Part 3 ===
+
-
 
+
-
 
+
-
 
+
-
 
+
-
== Results ==
+
-
 
+
|}
|}
 
 

Revision as of 02:56, 28 September 2013

Animation

 


Sexual differentiation is the most common and natural phenomenon in multicellutar organism, Usually, two genders’ combination through fertilization is essential for their proliferation. However, in the most primitive organisms, no sexual differentiation existed. With the evolution from protist to metazoan such as animals, definite sexual differentiation came into being. So, there is a question that when and how sexual differentiation happened. The special F factor in E. coli enables its gene communication and determination of the sex what we defined as “female” and “male”. Though this kind of gene communication is not genuinely sexual differentiation, we could make a hypothesis that the F factor is the transitory stage to true sexual differentiation. So we want to imitate sexual differentiation in unicellular organism to help us understand the process of sexual differentiation. We believe that this imitation would be very interesting and attract more people to do related research.