Team:Imperial College/Growth Assays
From 2013.igem.org
Line 34: | Line 34: | ||
{| class="wikitable" style="margin: 1em auto 1em auto;" | {| class="wikitable" style="margin: 1em auto 1em auto;" | ||
- | |[[File:WCM_media.png|thumbnail|right|400px|Growth | + | |[[File:WCM_media.png|thumbnail|right|400px|<b>Growth assay in waste conditioned media (WCM)</b>. E. coli (MG1655) transformed with [http://parts.igem.org/Part:BBa_K639003 mCherry stress biosensor.] were grown with LB-based waste conditioned media at 37ºC, with shaking. Error bars represent S.E.M., n=4]] |
- | |[[File:Very_stressed_ecoli.jpg|thumbnail|left|400px|mCherry stress biosensor (BBa_K639003) transformed MG1655 were grown with [https://2013.igem.org/Team:Imperial_College/Protocols LB-WCM] at 37oC, with shaking for 48 hours.]] | + | |[[File:Very_stressed_ecoli.jpg|thumbnail|left|400px|<b>Photograph of waste conditioned media cultures</b> mCherry stress biosensor (BBa_K639003) transformed MG1655 were grown with [https://2013.igem.org/Team:Imperial_College/Protocols LB-WCM] at 37oC, with shaking for 48 hours.]] |
[[File:WCM2.png|thumbnail|center|400px|<b>Growth assay in waste conditioned media (WCM).</b> E. coli (MG1655) transformed with either empty vector control (EV) or mCherry stress biosensor (BBa_K639003) were grown in WCM for 5 hours, with shaking at 37oC. Error bars are SEM, n=4.]] | [[File:WCM2.png|thumbnail|center|400px|<b>Growth assay in waste conditioned media (WCM).</b> E. coli (MG1655) transformed with either empty vector control (EV) or mCherry stress biosensor (BBa_K639003) were grown in WCM for 5 hours, with shaking at 37oC. Error bars are SEM, n=4.]] | ||
Line 44: | Line 44: | ||
<b> Conclusion: MG1655 transformed with either empty vector (EV) control or mCherry stress biosensor (BBa_K639003) vector are viable and can grow in waste conditioned media. These data also represent the characterisation of an existing biobrick (BBa_K639003) within a new mixed waste/landfill context.<b> | <b> Conclusion: MG1655 transformed with either empty vector (EV) control or mCherry stress biosensor (BBa_K639003) vector are viable and can grow in waste conditioned media. These data also represent the characterisation of an existing biobrick (BBa_K639003) within a new mixed waste/landfill context.<b> | ||
+ | |||
+ | |||
<h2 class="clear">Characterisation of our Biobricks</h2> | <h2 class="clear">Characterisation of our Biobricks</h2> | ||
+ | |||
+ | Growth and induction assays of our project biobricks. Several of our constructs contain sfGFP within an operon and therefore fluorescence can be utilised to determine if expression is being induced by either addition of Arabinose or Xylose as appropriate to the construct. | ||
Revision as of 22:24, 28 September 2013
Growth and Toxicity Assays
This page includes all of our experimental growth, toxicity and sole carbon source assay data.
Growth assays with different experimental media
In additional to standard LB and minimal media several novel experimental media were developed in order to characterise Biobricks within a mixed waste/landfill setting. These media were characterised through an examination of pH and through an array of growth assays with the project chassis, E.coli (MG1655).
Conclusion: MG1655 E. coli are viable and grow in all of our experimental medias. We have established a novel media that is optimised for characterisation of biobricks within a mixed waste/landfill context.
Long term waste growth assays
These assays were designed to test whether our chassis, E. coli (MG1655) could grow directly with waste over a long period of time.
Waste media
Conclusion: MG1655 E. coli are viable and grow on mixed waste alone. Therefore we have established that our chassis could survive in a mixed waste bio-reactor context, which is validation of our concept to industrially implement our system.
Waste conditioned media
These assays were designed to test whether our chassis, E. coli (MG1655) could grow with waste conditioned media (WCM) over a period of 24-48 hours. Waste conditioned media is a filter sterilised version of the waste media and was designed for several reasons; Firstly we were unsure whether mixed waste would be toxic to Ecoli and hence a less concentrated version may be more suitable and secondly large chunks of waste would prevent accurate OD600 measurements and therefore we decided to filter out the largest chunks.
Conclusion: MG1655 transformed with either empty vector (EV) control or mCherry stress biosensor (BBa_K639003) vector are viable and can grow in waste conditioned media. These data also represent the characterisation of an existing biobrick (BBa_K639003) within a new mixed waste/landfill context.<b>
Characterisation of our Biobricks
Growth and induction assays of our project biobricks. Several of our constructs contain sfGFP within an operon and therefore fluorescence can be utilised to determine if expression is being induced by either addition of Arabinose or Xylose as appropriate to the construct.
Empty Vector Control
Characterisation of existing Biobricks
phaCAB biobrick characterisation
LB
M9 Minimal
M9 Supplemented
Stress biosensor characterisation BBa_K639003
IPTG induction assay
Originally we intended on using [http://parts.igem.org/Part:BBa_K639003 BBa_K639003] to detect whether our cells were stressed when placed in various toxic byproducts. However, as the data below shows, this biobrick is very leaky. As such, we are using the stress sensor as a marker for cell growth and also to show that the cells had been successfully transformed with the correct chloramphenicol resistance.
pBAD characterisation
Glucose
ANOVA analysis shows that...
Plastic Toxicity Assays
L-lactic Acid
Ethylene glycol
Reduced growth at 30oC likely due to decreased efficiency of MG1655 ethylene glycol break down enzymes. These enzymes (see UC Davis 2012) are endogenously expressed and detoxify Ethylene Glycol.
3-hydroxybutyrate (3HB)
Acetoacetate
Poly(3-hydroxybutyrate) P(3HB)
Poly(lactic acid) (PLA)
Sole carbon source
3HB
Acetoacetate