Team:Peking/Project/Devices

From 2013.igem.org

(Difference between revisions)
(Created page with "<html> <style type="text/css"> - hiding the top section: body{position:absolute; top:0px; width:100%; height:2480px;} #top-section{ height:0px; border:none; width:98...")
Line 2: Line 2:
<style type="text/css">
<style type="text/css">
/* hiding the top section*/
/* hiding the top section*/
-
body{position:absolute; top:0px; width:100%; height:2480px;}
+
body{position:absolute; top:0px; width:100%; height:1480px;}
#top-section{
#top-section{
   height:0px;
   height:0px;
Line 126: Line 126:
}
}
/* end menu (edit, page ...) */
/* end menu (edit, page ...) */
-
 
-
/* navigation bar*/
 
/* navigation bar*/
/* navigation bar*/
Line 158: Line 156:
#iGEM_logo{position:absolute; top:30px; left:1090px; height:80px;}
#iGEM_logo{position:absolute; top:30px; left:1090px; height:80px;}
/*end navigation bar*/
/*end navigation bar*/
 +
/*Major body*/
/*Major body*/
#MajorBody{position:absolute; top:24px; left:0px; width:1200px; height:590px; background-color:#f9f9f7;}
#MajorBody{position:absolute; top:24px; left:0px; width:1200px; height:590px; background-color:#f9f9f7;}
#LeftNavigation{position:fixed; top:130px; float:left; width:200px; height:100%; background-color:#313131;z-index:1000;}
#LeftNavigation{position:fixed; top:130px; float:left; width:200px; height:100%; background-color:#313131;z-index:1000;}
-
#ProjectList{position:absolute; top:60px; left:0px; color:#ffffff; font-family: calibri, arial, helvetica, sans-serif;}
+
#SensorsListTitle{position:absolute; top:40px; left:20px; color:#ffffff; font-size:20px; font-family: calibri, arial, helvetica, sans-serif; text-decoration:none; border-bottom:0px;}
-
#ProjectList > li {display:block; list-style-type:none; width:180px; height:28px; font-size:18px; text-align:left; background-color:transparent;}
+
#ProjectList{position:absolute; top:90px; left:0px; color:#ffffff; font-family: calibri, arial, helvetica, sans-serif;}
 +
#ProjectList > li {position:relative;display:block; list-style-type:none; width:180px; font-size:16px; text-align:left; background-color:transparent; margin:20px 0;}
.SensorsListItem>a {color:#ffffff; text-decoration:none;}
.SensorsListItem>a {color:#ffffff; text-decoration:none;}
.SensorsListItem:hover >a{color:#999999;}
.SensorsListItem:hover >a{color:#999999;}
Line 177: Line 177:
#FixedWhiteBackground{position:fixed; top:0px; float:right; width:1200px; height:100%; z-index:-100; background-color:#ffffff;}
#FixedWhiteBackground{position:fixed; top:0px; float:right; width:1200px; height:100%; z-index:-100; background-color:#ffffff;}
-
/*Parts Editing Area*/
+
/*Model Editing Area*/
-
#PartsEditingArea{position:absolute; left:200px; top:340px; width:1000px; height:9200px; background-color:#ffffff;}
+
#ModelEditingArea{position:absolute; left:200px; top:340px; width:1000px; height:6000px; background-color:#ffffff;font-family:calibri,Arial, Helvetica, sans-serif; font-size:18px;line-height:25px; padding:80px 0; }
-
.PartsEditingAreaClass p{position:relative; left:80px; width:840px;font-size:18px; font-family:calibri,arial,helvetica,sans-serif; line-height:25px;}
+
.ModelEditingArea>h1{text-align:center; position:relative;left:80px; width:200px; font-size:24px;color:#FFFFFF;background-color:#004258;line-height:40px;font-weight:bold ;font-style:Italic; padding:0px;}
-
.PartsEditingAreaClass a{color:#ca4321; font-weight:bold;}
+
.ModelEditingArea>p{position:relative;left:80px; width:840px; text-align:justify;}
 +
.ModelEditingArea>ol{position:relative;left:75px; width:750px; text-align:justify; font-size:16px;}
 +
.ModelEditingArea li{left:0px;}
 +
.ModelEditingArea a{color:#004258; font-weight:bold;}
 +
.ModelEditingArea table{position:relative; left:100px; width:800px; text-align:center;}
-
#Content1{text-align:justify;top:80px;position:relative; left:80px; width:840px;font-size:18px; font-family:calibri,arial,helvetica,sans-serif; line-height:25px;}
+
.ModelFineTFigure{position:relative; left:100px; width:800px;}
-
#FigurePic1{top:75px;margin:25px;position:relative;left:425px;width:150px}
+
#ModelFineTTitle1{width:200px;}
 +
#ModelFineTTitle2{width:300px;}
 +
#ModelFineTTitle3{width:430px;}
 +
#ModelFineTTitle4{width:200px;}
 +
#ModelFineTTitle5{width:300px;}
 +
#ModelFineTTitle6{width:230px;}
-
#Content2{text-align:justify;top:80px;position:relative; left:80px; width:840px;font-size:18px; font-family:calibri,arial,helvetica,sans-serif; line-height:25px;}
+
#ModelFineTLegend1{position:relative; left:100px; width:800px;}
 +
#ModelFineTLegend2{position:relative; left:100px; width:800px;}
 +
#ModelFineTLegend3{position:relative; left:100px; width:800px;}
 +
#ModelFineTLegend4{position:relative; left:100px; width:800px;}
 +
#ModelFineTLegend5{position:relative; left:100px; width:800px;}
-
#FigurePic2{top:75px; margin:25px; position:relative;left:200px;width:600px}
+
#ModelFineTEQ1{position:relative; left:80px; width:230px;}
 +
#ModelFineTEQ2{position:relative; left:80px; width:370px;}
 +
#ModelFineTEQ3{position:relative; left:80px; width:700px;}
 +
#ModelFineTEQ4{position:relative; left:80px; width:500px;}
 +
#ModelFineTEQ5{position:relative; left:80px; width:650px;}
 +
#ModelFineTEQ6{position:relative; left:80px; width:350px;}
 +
#ModelFineTEQ7{position:relative; left:80px; width:450px;}
 +
#ModelFineTEQ8{position:relative; left:80px; width:450px;}
 +
#ModelFineTEQ9{position:relative; left:80px; width:250px;}
-
#Figure1{text-align:justify;top:50px;position:relative; left:100px; width:800px;font-size:14px; font-family:arial,helvetica,sans-serif; line-height:20px;}
+
#Figure3Complex{position:relative; height:580px;}
 +
#Figure3Complex > img{position:absolute; top:0px; left:50px; width:700px;}
 +
#Figure3Complex > p{position:absolute; top:320px; left:450px; width:300px;}
-
#Content3{text-align:justify;top:80px;position:relative; left:80px; width:840px;font-size:18px; font-family:calibri,arial,helvetica,sans-serif; line-height:25px;}
 
-
#FigurePic3{top:75px;margin:25px;position:relative;left:300px;width:400px}
+
#MileStone1{position:relative; top:-200px;}
 +
#MileStone2{position:relative; top:-200px;}
 +
#MileStone3{position:relative; top:-200px;}
 +
#MileStone4{position:relative; top:-200px;}
 +
#MileStone5{position:relative; top:-200px;}
 +
#MileStone6{position:relative; top:-200px;}
-
#Figure2{text-align:center;top:50px;position:relative; left:100px; width:800px;font-size:14px; font-family:arial,helvetica,sans-serif; line-height:20px;}
+
/*End of Model Editing Area*/
-
 
+
-
#Content4{text-align:justify;top:80px;position:relative; left:80px; width:840px;font-size:18px; font-family:calibri,arial,helvetica,sans-serif; line-height:25px;}
+
-
 
+
-
#Content5{text-align:justify;top:80px;position:relative; left:80px; width:840px;font-size:18px; font-family:calibri,arial,helvetica,sans-serif; line-height:25px;}
+
-
 
+
-
#FigurePic4{top:75px;margin:25px; position:relative;left:150px;width:700px}
+
-
 
+
-
#Figure3{text-align:justify;top:50px;position:relative; left:100px; width:800px;font-size:14px; font-family:arial,helvetica,sans-serif; line-height:20px;}
+
-
 
+
-
#Content6{text-align:justify;top:80px;position:relative; left:80px; width:840px;font-size:18px; font-family:calibri,arial,helvetica,sans-serif; line-height:25px;}
+
-
 
+
-
#FigurePic5{top:75px;margin:25px;position:relative;left:65px;width:840px}
+
-
 
+
-
#Figure4{text-align:justify;top:50px;position:relative; left:100px; width:800px;font-size:14px; font-family:arial,helvetica,sans-serif; line-height:20px;}
+
-
 
+
-
#Content7{text-align:justify;top:80px;position:relative; left:80px; width:840px;font-size:18px; font-family:calibri,arial,helvetica,sans-serif; line-height:25px;}
+
-
 
+
-
#FigurePic6{top:75px;margin:25px;position:relative;left:60px;width:800px}
+
-
 
+
-
#Figure5{text-align:justify;top:50px;position:relative; left:100px; width:800px;font-size:14px; font-family:arial,helvetica,sans-serif; line-height:20px;}
+
-
 
+
-
#Content8{text-align:justify;top:80px;position:relative; left:80px; width:840px;font-size:18px; font-family:calibri,arial,helvetica,sans-serif; line-height:25px;}
+
-
 
+
-
#model15{position:relative; width:500px; left:250px;}
+
-
 
+
-
#Legend7{font-family:arial,helvetica,sans-serif;position:relative; left:100px;width:800px; font-size:14px;line-height:20px}
+
-
 
+
-
#Content6_1{text-align:justify;top:20px;position:relative; left:80px; width:840px;font-size:18px; font-family:calibri,arial,helvetica,sans-serif; line-height:25px;}
+
-
 
+
-
#realfigure5{position:relative; width:500px; left:250px;}
+
-
 
+
-
#realfigurelegend5{font-family:arial,helvetica,sans-serif;position:relative; left:100px;width:800px; font-size:14px;line-height:20px}
+
-
 
+
-
#Content9{text-align:justify;top:80px;position:relative; left:80px; width:840px;font-size:18px; font-family:calibri,arial,helvetica,sans-serif; line-height:25px;}
+
-
 
+
-
#Content10{text-align:justify;top:80px;position:relative; left:80px; width:840px;font-size:18px; font-family:calibri,arial,helvetica,sans-serif; line-height:25px;}
+
-
 
+
-
#FigurePic8{top:75px;margin:25px;position:relative;left:225px;width:500px}
+
-
 
+
-
#FigurePic9{top:75px;margin:25px;position:relative;left:225px;width:500px}
+
-
 
+
-
#Content11{text-align:justify;top:80px;position:relative; left:80px; width:840px;font-size:18px; font-family:calibri,arial,helvetica,sans-serif; line-height:25px;}
+
-
 
+
-
#Content12{text-align:justify;top:80px;position:relative; left:80px; width:840px;font-size:18px; font-family:calibri,arial,helvetica,sans-serif; line-height:25px;}
+
-
 
+
-
#FigurePic10{top:75px;margin:25px;position:relative;left:130px;width:700px}
+
-
 
+
-
#FigurePic11{top:75px;margin:25px;position:relative;left:250px;width:400px}
+
-
 
+
-
#Figure8{text-align:justify;top:50px;position:relative; left:100px; width:800px;font-size:14px; font-family:arial,helvetica,sans-serif; line-height:20px;}
+
-
 
+
-
#Figure9{text-align:justify;top:50px;position:relative; left:100px; width:800px;font-size:14px; font-family:arial,helvetica,sans-serif; line-height:20px;}
+
-
 
+
-
#Figure10{text-align:justify;top:50px;position:relative; left:100px; width:800px;font-size:14px; font-family:arial,helvetica,sans-serif; line-height:20px;}
+
-
 
+
-
#Figure11{text-align:justify;top:50px;position:relative; left:100px; width:800px;font-size:14px; font-family:arial,helvetica,sans-serif; line-height:20px;}
+
-
 
+
-
#PageSubtitle1{top:50px;position:relative;font-size:24px;left:80px;border-bottom:0px ; color:#ffffff; font-weight:bold ;font-style:Italic;font-size:24px;font-family:calibri,arial,helvetica,sans-serif;background-color:#ca4321; height:40px;width:150px ;text-align:center;line-height:40px;}
+
-
#PageSubtitle2{top:100px;margin:50px;position:relative;font-size:24px;left:30px;border-bottom:0px ; color:#ffffff; font-weight:bold ;font-style:Italic;font-size:24px;font-family:calibri,arial,helvetica,sans-serif;background-color:#ca4321; height:40px;width:300px ;text-align:center;line-height:40px;}
+
-
#PageSubtitle3{top:100px;margin:50px;position:relative;font-size:24px;left:30px;border-bottom:0px ; color:#ffffff; font-weight:bold ;font-style:Italic;font-size:24px;font-family:calibri,arial,helvetica,sans-serif;background-color:#ca4321; height:40px;width:300px ;text-align:center;line-height:40px;}
+
-
#PageSubtitle4{top:100px;margin:50px;position:relative;font-size:24px;left:30px;border-bottom:0px ; color:#ffffff; font-weight:bold ;font-style:Italic;font-size:24px;font-family:calibri,arial,helvetica,sans-serif;background-color:#ca4321; height:40px;width:400px ;text-align:center;line-height:40px;}
+
-
#PageSubtitle5{top:100px;margin:50px;position:relative;font-size:24px;left:30px;border-bottom:0px ; color:#ffffff; font-weight:bold ;font-style:Italic;font-size:24px;font-family:calibri,arial,helvetica,sans-serif;background-color:#ca4321; height:40px;width:400px ;text-align:center;line-height:40px;}
+
-
 
+
-
#ReferenceBPF{top:100px;line-height:20px; text-align:justify; position:relative;left:100px; width:800px; border-bottom:0px; color:#1b1b1b; font-size:14px;font-family:arial,calibri,helvetica,sans-serif;}
+
-
 
+
-
 
+
-
 
+
-
 
+
-
 
+
-
/*End of Parts Editing Area*/
+
Line 347: Line 304:
<div id="MajorBody">   
<div id="MajorBody">   
     <div id="LeftNavigation">
     <div id="LeftNavigation">
 +
          <h1 id="SensorsListTitle">Biosensor Fine-tuning</h1>
           <ul id="ProjectList">
           <ul id="ProjectList">
-
                 <li class="SensorsListItem"><a href="#Mileston1">Introduction</a><li>
+
                 <li class="SensorsListItem"><a href="#MileStone1">Introduction</a><li>
-
                 <li class="SensorsListItem"><a href="#Mileston2">Band-pass Filter</a><li>
+
                 <li class="SensorsListItem"><a href="#MileStone2">Construction of ODEs</a><li>
-
                 <li class="SensorsListItem"><a href="#Mileston3">Construction </a><li>
+
                <li class="SensorsListItem"><a href="#MileStone3">Pc Fine-tuining</a><li>
-
                 <li class="SensorsListItem"><a href="#Mileston4">Hybrid Promoter</a><li>
+
                 <li class="SensorsListItem"><a href="#MileStone4">RBS Fine-tuining</a><li>
-
                 <li class="SensorsListItem"><a href="#Mileston5">Characterization</a><li>
+
                 <li class="SensorsListItem"><a href="#MileStone5">Why Medium Strength?</a><li>
 +
                 <li class="SensorsListItem"><a href="#MileStone6">Parameter Table</a><li>
                 </ul>
                 </ul>
     </div>
     </div>
     <div id="ModelOverviewContainer">
     <div id="ModelOverviewContainer">
-
           <img id="ModelOverviewBackground" src="https://static.igem.org/mediawiki/igem.org/5/50/Peking2013_BandPass_Background.jpg" />
+
           <img id="ModelOverviewBackground" src="https://static.igem.org/mediawiki/2013/b/b6/Peking2013_ModelFineT_TitleBackground.png" />
-
           <h1 id="ModelOverviewTitle">Band-pass Filter</h1>
+
           <h1 id="ModelOverviewTitle">Biosensor Fine-tuning</h1>
-
          <h1 id="MoedlOverviewIntroduction"></h1>
+
 
-
          <p id="ModelOverviewContent"><br/>
+
         
</p>
</p>
     </div>
     </div>
-
 
-
<div id="Mileston1" style="position:absolute; top:240px;"></div>
 
-
<div id="Mileston2" style="position:absolute; top:1800px;"></div>
 
-
<div id="Mileston3" style="position:absolute; top:3500px;"></div>
 
-
<div id="Mileston4" style="position:absolute; top:5100px;"></div>
 
-
<div id="Mileston5" style="position:absolute; top:6200px;"></div>
 
-
 
<div id="FixedWhiteBackground"></div>
<div id="FixedWhiteBackground"></div>
-
<!--parts editing area-->
+
<!--model editing area-->
-
<div id="PartsEditingArea" class="PartsEditingAreaClass">
+
<div id="ModelEditingArea" class="ModelEditingArea" >
-
 
+
    <div id="MileStone1"></div>
-
<p id="PageSubtitle1">Introduction</p>
+
    <h1 id="ModelFineTTitle1">Introduction</h1>
-
 
+
    <p>Here we take biosensor HbpR as an example to demonstrate how our fine-tuning improves the performance of our biosensors. We constructed Ordinary Differential Equations (ODEs) based on single molecule kinetics and simulated the performance of our biosensors under different Pc and RBS strength with the steady state solution of the ODEs. </p>
-
    <p id="Content1">Hitherto we have constructed a biosensor toolkit for aromatic compounds with wide sensing coverage and high orthogonality between different sensing modules. However, in order to cope with the need of in-field detection, we should further develop advanced equipment for our toolkit to implement fast, economical and convenient measurement of aromatic compounds in various environments.  
+
    <img class="ModelFineTFigure" src="https://static.igem.org/mediawiki/2013/8/8a/Peking2013_ModelFineT_Circuit.png" />
 +
    <p id="ModelFineTLegend1"><b>Figure1.</b>Genetic regulation circuit of the biosensor HbpR.<br/><br/><br/></p>
 +
   
 +
    <div id="MileStone2"></div>
 +
    <h1 id="ModelFineTTitle2">Construction of ODEs</h1>
 +
    <p>The genetic regulation circuit is shown in <b>figure 1</b> HbpR is constitutively expressed under the constitutive promoter(Pc). When the cell is exposed to its inducer X, HbpR can bind to X and form a complex HbpRX. Considering cooperation may exists in this binding reaction, the steady state concentration of HbpRX can be written as</p>
 +
    <img id="ModelFineTEQ1" src="https://static.igem.org/mediawiki/2013/5/58/Peking2013_ModelFineT_EQ1.PNG" />
 +
    <p>Where K<sub>H</sub> is a constant and n<sub>H</sub> is the Hill coefficient of this reaction.
 +
<br/><br/>HbpRX is an active state, which can activate its promoter PHbpR. We assume that there are a small proportion of HbpR can change into an active state without binding to its inducer X. Therefore, the concentraion of HbpR in active state(HbpRA) can be writen as</p>
 +
    <img id="ModelFineTEQ2" src="https://static.igem.org/mediawiki/2013/3/3f/Peking2013_ModelFineT_EQ2.PNG" />
 +
    <p>Where α is the proportion of HbpR in active state without binding to X.
<br/><br/>
<br/><br/>
-
Unfortunately, common reporting systems often failed to meet these requirements. This is because they often possess a Hill-function type dose-response curve. As can be observed from the dose-response curve of a typical Hill function (<B>Fig. 1a</B>), the linear range of a Hill function could be rather narrow, and the transition from low-output to high-output may be quite obscure to naked eyes. Thus appropriate equipment would be required to accurately measure output that follows Hill function type dose-response curve, making the measurement expensive and time consuming. </p>
+
HbpRA can bind to its promoter PHbpR and initiate the transcription. Concerning the number of HbpRA is much larger than the number of PHbpR the concentration of HbpRAPHbpR complex satisfies
-
 
+
-
 
+
-
 
+
-
<img id="FigurePic2" src="https://static.igem.org/mediawiki/igem.org/1/10/Peking2013_Bpfigure2.png" />
+
-
<p id="Figure1">
+
-
<B>Figure 1.</B> Dose-response curves and typical measurement results for a canonical reporting system <b>a</b>, and Band-pass Filter <b>b</b>. <b>a</b>, A general reporting systems typically possesses a Hill function type dose-response curve, and it's quite difficult to determine the absolute intensity of a particular signal among its gradually increasing outputs. <b>b</b>, dose-response curve of a Band-pass Filter possesses a single peak, and it's relatively easy to determine the position of the peak in its output series.
+
</p>
</p>
-
 
+
    <img id="ModelFineTEQ3" src="https://static.igem.org/mediawiki/2013/a/ae/Peking2013_ModelFineT_EQ3.PNG" />
-
 
+
    <p>Where k<sub>P1</sub> and k<sub>P2</sub> are the reaction rate constants of forward and reverse reactions.
-
<p id="Content3">
+
<br/><br/>
-
Although unaided eyes can barely determine the absolute intensity value of a particular signal among a series of signals with various intensities (<B>Fig. 1a</B>), humans are pretty competent at determining which signal is the strongest one, especially when there is a single peak among the signals (<B>Fig. 1b</B>). Thus it can be reasoned that if we are capable of transforming a series of signals with intensities changing monotonously into a series of signals with an unique intensity peak, reading and interpreting of the output signals will become much more intuitive and convenient. Fortunately, a Band-pass Filter is exactly the equipment that can turn a series of gradually increasing input signals into a series of output signals with a single peak.  
+
The concentration of mRNA satisfies
-
<br/><br/>It can be expected that when a Band-pass Filter is successful constructed, we may serially dilute our sample into a concentration gradient and put our biosensor into the sample. The analyte concentration can be easily determined by the serial number of the test tube exhibiting highest output intensity (<B>Fig. 2</B>). We hoped that by implementing a Band-pass Filter circuit in our bacterial host cells, we might realize fast, economical and convenient detection of aromatic compounds in environment.
+
</p>
</p>
-
 
+
    <img id="ModelFineTEQ4" src="https://static.igem.org/mediawiki/2013/c/c5/Peking2013_ModelFineT_EQ4.PNG" />
-
<img id="FigurePic3" src="https://static.igem.org/mediawiki/igem.org/7/7f/Peking2013_Bpfigure3.png" />
+
    <p>Where A<sub>m</sub> and D<sub>m</sub> are constants.  
-
<p id="Figure2">
+
<br/><br/>
-
<B>Figure 2.</B> Graph illustration of proposed Band-pass Filter testing method. First a sample series need to be created by serially diluting the original sample. Then bacterial cells expressing Band-pass Filter circuits will be exposed to the sample series and the concentration of original sample will be determined based on serial number of the sample inducing highest output.
+
The concentraion of mRNA ribosome complex(mRNArib) satisfies
</p>
</p>
-
 
+
    <img id="ModelFineTEQ5" src="https://static.igem.org/mediawiki/2013/9/91/Peking2013_ModelFineT_EQ5.PNG" />
-
<p id="PageSubtitle2">Concept of Band-Pass Filter
+
    <p>Where k<sub>RBS1</sub> is the reaction rate constant of the forward reaction which is influened by the RBS strength and k<sub>R2</sub> is the reaction rate constant of the reverse reaction.
-
</p>
+
-
 
+
-
 
+
-
<p id="Content4">
+
-
Band-pass Filter is a term used in electric engineering. It describes a device that passes signals with frequencies confined to a certain range and blocks signals with frequencies outside that range. The Band-pass Filter is constructed by combining a high-pass filter, which only pass signals with high frequencies, and a low-pass filter, which only pass signals with low frequencies (<B>Fig. 3</B>).</p>
+
-
 
+
-
<img id="FigurePic4" src="https://static.igem.org/mediawiki/igem.org/5/52/Peking2013_Bpfigure4.png" />
+
-
<p id="Figure3">
+
-
<B>Figure 3.</B> Sketch diagram of a typical Band-pass Filter in electric engineering. Vertical arrows show the input-output relationships of individual high-pass filters (<b>left circle</b>), and individual low-pass filters (<b>right circle</b>). The horizontal arrows show input-output relationship of a Band-pass Filter constructed by concatenating a high-pass filter and a low-pass filter. In an electric Band-pass Filter, the input signal is first processed by the high-pass filter to filter out low-frequency signals and then processed by the low-pass filter to filter out high-frequency signals, leaving only medium-frequency signals.
+
-
</p>
+
-
 
+
-
 
+
-
 
+
-
 
+
-
<p id="Content5">
+
-
In analogy to an electric Band-pass Filter, a biological Band-pass Filter is a device that can be activated only by an input signal with medium intensity. Neither signal with low nor high intensity will generate an output signal (<B>Fig. 4</B>).
+
<br/><br/>
<br/><br/>
-
Quite similar to an electric Band-pass Filter, a biological Band-pass Filter can also be separated into two components, namely the two types of regulation the input node exerts on the output node in the network topology. In one way, the input node activates the output node through a positive feed-forward loop; in another way, the input node inhibits the output node through a negative feed-forward loop. Such a network topology, with two counteracting regulatory feed-forward loops connecting input node and output node, is called an incoherent feed-forward loop topology (<B>Fig. 4a</B>). The positive feed-forward loop will respond only to high intensity input signal (<B>Fig. 4b</B>),serving as a 'high-pass filter'. The negative feed-forward loop will respond only to the low intensity input signal (<B>Fig. 4c</B>), serving as the 'low-pass filter'. By fine-tuning transition points of the dose-response curves of the two counteracting feed-forward loops so that the transition point of the negative loop is higher than that of the positive loop, the biological Band-pass Filter, constructed by combining these two loops together, will respond only to a medium intensity input signal and generate an output peak at a specific concentration (<B>Fig. 4d</B>).
+
The concentration of sfGFP satisfies
</p>
</p>
-
 
+
    <img id="ModelFineTEQ6" src="https://static.igem.org/mediawiki/2013/0/0a/Peking2013_ModerFineT_EQ6.PNG" />
-
<img id="FigurePic5" src="https://static.igem.org/mediawiki/igem.org/e/e3/Peking2013_Bpfigure5x.png" />
+
    <p>Where A<sub>G</sub> and D<sub>G</sub> are constants.  
-
<p id="Figure4">
+
-
<B>Figure 4.</B> Sketch diagram of a possible topology (<b>a</b>) and functioning mechanism (<b>b</b>, <b>c</b> and <b>d</b>) of a biological Band-pass Filter. <b>a</b>, A network topology containing an Incoherent feed-forward loop, capable of generating a Band-pass Filter. The input node A directly represses output node C, creating a negative feed-forward loop, while indirectly activating output node C through repressing internode B which represses node C, creating a positive feed-forward loop. <b>b</b>, dose-response curve of positive feed-forward loop when characterized independently. The positive loop will respond only to high intensity input. <b>c</b>, Dose-response curve of negative feed-forward loop when characterized independently. The negative loop will respond only to low intensity input. <b>d</b>, The integrated dose-response curve of the incoherent feed-forward loop. High intensity input is filtered out by negative loop and low intensity input is filtered out by positive loop, only medium intensity input will induce a significant response.
+
-
</p>
+
-
 
+
-
<p id="PageSubtitle3">Constructing Band-pass Filter
+
-
</p>
+
-
 
+
-
<p id="Content6">
+
-
Having illustrated the basic principles of a Band-pass Filter, we set out to rationally design its genetic circuit.  
+
<br/><br/>
<br/><br/>
-
First we selected three potential circuit networks (<b>Fig. 5</b>) with incoherent feed-forward loop as their core topology and then used Ordinary Differential Equations (ODEs) to analyze these circuit networks to identify the most robust circuit network. We chose to follow the four-node network because its performance remained more satisfactory than the others when the parameters varied randomly.
+
The fluorescence can be written as
-
<br/><br/><br/><br/><br/></p>
+
-
<img id="realfigure5" src="https://static.igem.org/mediawiki/2013/8/81/Peking_2013_Project_band-pass_filter_Fig_5.png" />
+
-
<p id="realfigurelegend5"><b>Figure 5.</b> Graphs of three circuit networks we analyzed in our modeling. Each node represent a regulatory protein, either an activator or and repressor. All four networks possess incoherent feed-forward loops as core topology. Components of the activating half of an incoherent feed-forward loop are marked as green while components of repressing half are marked as black. <b>a</b>, <b>b</b>, Three-node networks taken into consideration. The principal difference between these two networks is the regulatory function of input node A. <b>a</b>, Three-node network where input node A functions as repressor. A directly repress output node C while indirectly activating it by inhibiting B, which represses C directly. <b>b</b>, Three-node network where input node A functions as activator. A directly repress output node C while indirectly activating it by activating B, which represses C directly. <b>c</b>, Four-node network taken into consideration. A indirectly activates output node D by activating C which activates D, while indirectly represses output by activating B that inhibits D.
+
-
</br>
+
-
</br>
+
-
</br>
+
</p>
</p>
-
<p id="Content6_2">
+
    <img id="ModelFineTEQ7" src="https://static.igem.org/mediawiki/2013/6/68/Peking2013_ModelFineT_EQ7.PNG" />
-
Our next step is to select appropriate proteins to serve as individual nodes in the chosen circuit network. First we figured out the most crucial parameters in the ODE model through a parameter sensitivity analysis and determined the most desirable value for these parameters. Then we chose regulatory proteins whose kinetic parameter values are close to the desirable values, based on the reasoning that they would work much more efficiently than casually chosen ones.
+
    <p>Where A<sub>F</sub> is a constant.
<br/><br/>
<br/><br/>
-
Based on the analysis above, we selected phage transcription activator ϕR73&delta; as internode activator and phage transcription inhibitor cI as internode inhibitor while choosing NahR as the input sensor and sfGFP as reporter. The final construct is shown in <b>Figure 6</b>.</p>
+
We deduced the steady state solution of the ODEs above
-
<img id="model15" src="https://static.igem.org/mediawiki/igem.org/d/df/Peking2013_model15_.png" />
+
-
 
+
-
<p id="Legend7"><b>Figure 6.</b>The final construct of our Band-pass Filter. The aromatic sensor (input node) will activate transcription of &phi;R73&delta; and cI gene. The &phi;R73&delta; will activate transcription of sfGFP reporter gene while cI represses transcription of the reporter gene, creating an incoherent loop. With proper parameter sets, such a genetic circuit will serve the function as a Band-pass Filter.</p>
+
-
<p id ="Content6_1">
+
-
Details of constructing process can be viewed at <a href="https://2013.igem.org/Team:Peking/Model">Model</a> page.
+
</p>
</p>
 +
    <img id="ModelFineTEQ8" src="https://static.igem.org/mediawiki/2013/8/8e/Peking_ModelFineT_EQ8.PNG" />
 +
    <p>Where</p>
 +
    <img id="ModelFineTEQ9" src="https://static.igem.org/mediawiki/2013/c/c3/Peking2013_ModelFineT_EQ9.PNG" />
-
<p id="PageSubtitle4">Building Our Hybrid Promoter
+
    <p><br/><br/><br/></p>
 +
    <div id="MileStone3"></div>
 +
    <h1 id="ModelFineTTitle3">Constitutive Promoter Fine-tuning</h1>
 +
    <p>The performance of the HbpR biosensor under different constitutive promoters are simulated by changing the parameter[HbpR](the concentration of HbpR), which variates under different strength of constitutive promoters(Pc).
 +
<br/><br/>
 +
The modeling result<b>(Figure 2)</b> shows that the fluorescence increaces as the Pc strength increaces. But a medium strength of Pc gives the highest induction ratio.
</p>
</p>
 +
    <img class="ModelFineTFigure" src="https://static.igem.org/mediawiki/2013/d/d7/Peking2013_ModelFineT_Figure2.png" />
 +
    <p id="ModelFineTLegend2"><b>Figure 2.</b> The modeling result of the constitutive promoter fine-tuning. The dose-response curve is shown in the left plot, where the asterisks are the experimental data. The induction ratio curve is shown in the right plot.<br/><br/><br/></p>
-
<p id="Content7">
+
    <div id="MileStone4"></div>
-
After determining the circuit network and protein candidates, we still need to address an important issue: we need to find a way to enable co-regulation of the reporter gene by two different transcription regulators. So we modified a bacteriophage ϕR73’s <em>P<sub>2</sub></em> promoter into a hybrid promoter that can be activated by the ϕR73&delta; activator and repressed by the repressor cI simultaneously and put reporter sfGFP under its regulation. We constructed the hybrid promoter by replacing the sequence between position -1 and -25  of <em>P<sub>2</sub></em> promoter with the cI binding site <em>OR1</em> from Phage &lambda; <em>P<sub>R</sub></em> promoter. When ϕR73&delta; activator binds to its target sequence upstream of -35 element of the hybrid promoter, the transcription will start. The binding of cI dimers downstream of -35 element will block the binding of &sigma;<sup>70</sup> factors and thus repress the transcription even when ϕR73&delta; is bound. (<B>Fig. 7</B>). </p>
+
    <h1 id="ModelFineTTitle4">RBS Fine-tuning</h1>
-
 
+
    <p>The performance of the HbpR biosensor under different ribosome binding sites(RBSs) are simulated by changing the parameter K<sub>RBS</sub>, which is determined by the strength of RBS.
-
 
+
<br/><br/>
-
<img id="FigurePic6" src="https://static.igem.org/mediawiki/2013/b/bf/Peking2013_hybrid_promoter_2.2.png" />
+
The modeling result<b>(Figure 3)</b> shows that the fluorescence increaces as the RBS strength increaces. But a medium strength of RBS gives the highest induction ratio.
-
 
+
-
<p id="Figure5">
+
-
<B>Figure 7.</B> Construction of Our Hybrid Promoter. Sequence information of phage &phi;R73 <em>P<sub>2</sub></em> promoter (<b>a</b>), phage &lambda; <em>P<sub>R</sub></em> promoter (<b>b</b>) and our hybrid promoter (<b>c</b>) are shown. <b>a</b>, In the <em>P<sub>2</sub></em> promoter, &phi;R73&delta; binds to a region between position -42 and -71 and activates transcription. <b>b</b>, In <em>P<sub>R</sub></em> promoter, cI dimer binds to <em>OR1</em> site (marked as blue) between position -9 and -25, blocking binding of  &sigma;<sup>70</sup> factors and inhibiting transcription. cI binding region indicates the sequence we used to replace the corresponding region in <em>P<sub>2</sub></em> promoter.<b>c</b>, The hybrid promoter is constructed by replacing sequence between position -1 and -25 of &phi;R73 <em>P<sub>2</sub></em> promoter with sequence at the same position in phage &lambda; <em>P<sub>R</sub></em> promoter that contains an <em>OR1</em> site. The hybrid promoter is co-regulated by &phi;R73&delta; and cI, with &phi;R73&delta; activating and cI repressing. The repression of cI dominates over the activation of  &phi;R73&delta;, since the steric hindrance created by cI dimer prevents formation of transcription initiation complex even when RNA polymerases are recruited through the help of  &phi;R73&delta;.
+
</p>
</p>
 +
    <div  id="Figure3Complex" class="ModelFineTFigure">
 +
          <img src="https://static.igem.org/mediawiki/2013/b/bf/Peking2013_ModelFineT_Figure3.png"  />
 +
          <p id="ModelFineTLegend3"><b>Figure 3.</b> The modeling result for RBS fine-tuning. <b>(a)</b>, <b>(b)</b> The dose-response curve, where the asterisks are the experimental data. <b>(c)</b> The induction ratio curve.</p>
 +
    </div>
-
 
+
    <p><br/><br/><br/></p>
-
<p id="Content8">
+
    <div id="MileStone5"></div>
-
In the Band-pass Filter circuit we constructed above (<b>Fig. 6</b>), the promoter will function in the following way as input intensity gradually increase: when the input intensity is weak, the concentration of ϕR73&delta; is too low to generate a strong output; when the input intensity is medium, despite a portion of promoters occupied by cI dimmers, the rest still can be activated by ϕR73&delta; and bring about a visible output; when the input intensity is strong, almost all of the promoters are blocked by cI dimers and the output is shut down. Hence only medium input signal can induce a significant output and the an single peak of output signal would be generated.</p>
+
    <h1 id="ModelFineTTitle5">Why Medium Strength?</h1>
-
 
+
    <p>Both experimental and modeling result shows that a medium strength of Pc and RBS gives the highest induction ratio. The reason is that a medium strength balances differet leakages. Either too strong or too weak strength will aggravate the influence of a kind of leakage.
-
<p id="PageSubtitle5">Characterizing Hybrid Promoter
+
<br><br/>
 +
When the strength of Pc is too weak, the induction effect is too weak compared with the leakage of promoter PHbpR. When the strength of Pc is too strong, the concentration of HbpR in active state without inducer binding is high enough to saturate the promoter PHbpR <b>(Figure 4)</b>.
 +
<br><br/>
 +
When the strength of RBS is too weak, the induced fluorescence is overwhelmed by the basal fluorescence. When the strength of RBS is too strong, the translation rate will be saturated by the leakage of promoter PHbpR <b>(Figure 5)</b>.
</p>
</p>
 +
    <img class="ModelFineTFigure" src="https://static.igem.org/mediawiki/2013/3/3b/Peking2013_ModelFineT_Figure4.png" />
 +
    <p id="ModelFineTLegend4"><b>Figure 4.</b> Schematic plots to show why medium strength of Pc gives the highest induction ratio. In the left plot, the dose-response curve of HbpR in active state (HbpRA) under different Pc are plotted in different colors and the lower and upper bounds are denoted in a and b. The right plot shows mRNA expression level in different lower and upper bounds. The induction ratio can be calculated by dividing the fluorescence at b point by the fluorescence at a point.</p>
 +
    <img class="ModelFineTFigure" src="https://static.igem.org/mediawiki/2013/7/72/Peking2013_ModelFineT_Figure5.png" />
 +
    <p id="ModelFineTLegend5"><b>Figure 5.</b> Schematic plots to show why medium strength of RBS gives the highest induction ratio. In the left plot, the lower and upper bound of mRNA expression level are denoted in a and b. The right plot shows the dose-response curves of mRNA under different RBSs. The induction ratio can be calculated by dividing the fluorescence at b point by the fluorescence at a point.<br/><br/><br/> </p>
-
<p id ="Content9">
+
    <div id="MileStone6"></div>
-
As a key component of our Band-pass Filter circuit, the hybrid promoter must be carefully characterized in order to evaluate the feasibility of our Band-pass Filter circuit. To comprehensively characterize the dynamic performance of the hybrid promoter, we put two regulators of the hybrid promoter,  ϕR73&delta; and cI, under the control of two different inducible promoters, <em>P<sub>sal</sub></em> promoter and <em>P<sub>tac</sub></em> promoter. (<b>Fig. 8</b>). This enables us to manipulate separately the expression levels of two regulatory proteins through tuning <em>P<sub>sal</sub></em> and <em>P<sub>tac</sub></em> promoter by adding different concentration combinations of inducers (salicylic acid for <em>P<sub>sal</sub></em> promoter and IPTG for <em>P<sub>tac</sub></em> promoter).
+
    <h1 id="ModelFineTTitle6">Parameter Table</h1>
-
</p>
+
    <table border="1">
-
<img id="FigurePic8" src="https://static.igem.org/mediawiki/2013/d/d2/Peking2013_bandpass_figure1_better.png" />
+
            <tr><th>Parameter</th><th>Value</th></tr>
-
<p id = "Figure8">
+
            <tr><td rowspan="3">[HbpR]</td><td>10000 for J23106</td></tr>
-
<b>Figure 8.</b> Testing construct for hybrid promoter. &phi;R73&delta; was put under the regulation of <em>P<sub>sal</sub></em> promoter and cI was put under the control of <em>P<sub>tac</sub></em> promoter. Salicylic acid (SaA) will induce &phi;R73&delta; expression and activate the hybrid promoter. Isopropyl β-D-1-thiogalactopyranoside (IPTG) will induce cI expression and repress the hybrid promoter. Expression level of the two regulatory proteins can be manipulated separately by adding different concentration combinations of SaA and IPTG.
+
            <tr><td>256 for J23114</td></tr>
-
</p>
+
            <tr><td>22 for J23113</td></tr>
-
<p id = "Content10">
+
            <tr><td>n<sub>H</sub></td><td>1.7</td></tr>
-
To comprehensively characterized the hybrid promoter's transcription activity,  we exposed the characterization circuit (<b>Fig. 8</b>) to a 8x8 two-dimensional induction assay established by combining 8 different concentrations of salicylic acid and 8 different concentrations of IPTG and measured the fluorescence intensity of sfGFP reporter using Flow Cytometry. (<b>Fig. 9</b>)
+
            <tr><td>α</td><td>0.003</td></tr>
-
</p>
+
            <tr><td>K<sub>H</sub></td><td>0.004</td></tr>
-
<img id="FigurePic9" src="https://static.igem.org/mediawiki/2013/3/3f/Peking2013_bandpass_figure_2Dassay.png" />
+
            <tr><td>K<sub>PH</sub></td><td>0.005</td></tr>
-
<p id = "Figure9">
+
            <tr><td>K<sub>m</sub></td><td>0.005</td></tr>
-
<b>Figure 9</b>. Characterization of hybrid promoter's dynamic performance. A two-dimensional inducer concentration assay was established by combining 8 different SaA concentrations (0, 0.1, 0.5, 1, 5, 10, 50 and 100&micro;M) with 8 different IPTG concentrations (0, 1, 10, 50, 100, 150, 200 and 300&micro;M). Bacteria cells expressing the testing construct were exposed to the assay and sfGFP fluorescence intensity was measured using Flow Cytometry. For a fixed IPTG concentration,  fluorescence intensity gradually increased as SaA concentration increased. For a fixed SaA concentration , fluorescence intensity gradually decreased as IPTG concentration increased. These features indicated that the promoter functioned as expected.
+
            <tr><td>Leakage</td><td>0.008</td></tr>
-
</p>
+
            <tr><td rowspan="2">K<sub>F</sub></td><td>1400 for Pc simulation</td></tr>
-
<p id = "Content10">
+
            <tr><td>1900 for RBS simulation</td></tr>
-
The hybrid promoter worked as expected. For a fixed IPTG concentration, the sfGFP fluorescence gradually increased as the salicylic acid concentration increased, exhibiting a Hill-function type dose-response curve. For a fixed high salicylic acid concentration under which sfGFP expression is visibly induced, the fluorescence gradually decreased as the IPTG concentration increased, also exhibiting a Hill-function type dose-response curve. These data prove that the hybrid promoter can indeed be activated by ϕR73&delta; and repressed by cI, and the repressing effect of cI protein dominates over the activating effect of  ϕR73&delta; protein, because transcription of the hybrid promoter can still be repressed to a very low level by cI even when  ϕR73&delta; is expressed at a very high level.
+
            <tr><td rowspan="4">K<sub>RBS</sub></td><td>0.3 for Pc simulation</td></tr>
-
</br>
+
            <tr><td>0.17 for B0034</td></tr>
-
</br>
+
            <tr><td>3.5 for B0032</td></tr>
-
Simply characterizing the hybrid promoter won't satisfy us. We want to glean more information from this experiment in order to assess whether our Band-pass Filter design is really feasible or, in another word, whether the kinetic/dynamic parameter values of our genetic circuit actually fall within the range where a single output peak can be generated. However, there is an important feature in this testing construct that is radically different from our Band-pass Filter construct: the promoters driving the expression of ϕR73&delta; and cI are not the same, one is <em>P<sub>sal</sub></em>, the other is <em>P<sub>tac</sub></em>.  
+
            <tr><td>7 for B0031</td></tr>
-
</br>
+
            <tr><td rowspan="2">BasalFluorescence</td><td>60 for Pc simulation</td></tr>
-
</br>
+
            <tr><td>2 for RBS simulation</td></tr>
-
But this difference doesn't preclude the possibility of using data from this testing construct to give us insight on our original design. If the regulation mechanisms of the two promoters are close enough, we may reason that the Hill-functions describing the dynamic performance of the two promoters would also be similar (in the sense that their graphs can be overlapped by linearly stretching or compressing both axises). It is indeed the case. The <em>P<sub>sal</sub></em> promoter is repressed by NahR tetramer through bending of DNA when salicylic acid is absent, and when salicylic acid is present, NahR will undergo a conformation change and transcription will start. (See Project, biosensors, NahR) Mechanism for <em>P<sub>tac</sub></em> promoter is rather similar: LacI inhibits transcription through tetramerization and DNA bending when lactose is absent and the inhibition is eliminated through conformational change.
+
    </table>
-
</br>
+
    <p>*Parameters are determined from curve fitting. Because the experimental data of Pc fine-tuning and data of RBS fine-tuning are measured in different experiments, K<sub>F</sub> and BasalFluorescence has different value in Pc and RBS simulation.</p>
-
</br>
+
-
Following the reasoning above, we hypothesized that the negative feed-forward loop in the testing construct may actually represent a transformed version of the negative loop in the original Band-pass Filter construct. So we fit our model to the data from the testing construct in order to get real parameters for the Band-pass Filter circuit. (<b>Fig. 10</b>)
+
-
</p>
+
-
<img id="FigurePic10" src="https://static.igem.org/mediawiki/2013/8/82/Peking2013_bandpass_figure3_data_fitting.png" />
+
-
<p id = "Figure10">
+
-
<b>Figure 10.</b> Model based data fitting for &phi;R73&delta; activator (<b>a</b>) and cI repressor (<b>b</b>). <b>a</b>, Experimental points are sfGFP fluorescence intensities under different SaA concentrations without IPTG. The model based fitting curve provided parameter values for n<sub>A'</sub> and K<sub>AG</sub>. <b>b</b>, Experimental points are sfGFP fluorescence intensities under different IPTG concentrations along with 100&micro;M SaA. Model based data fitting curve provided parameter values for n<sub>B'</sub>, K<sub>BG</sub> and k<sub>AG</sub>&bull;k<sub>BG</sub>. Fitting results: n<sub>A'</sub>=0.72705; K<sub>AG</sub>=62.99928; n<sub>B'</sub>=1.15498; K<sub>BG</sub>=11.53988; k<sub>AG</sub>&bull;k<sub>BG</sub>=24671.78415. Definitions for the parameters can be viewed in equations written in <a href="https://2013.igem.org/Team:Peking/Model">Model</a> page.
+
-
</p>
+
-
<p id = "Content12">
+
-
We substituted the parameters obtained from data fitting into the original Band-pass Filter to observe whether a peak is generated. (<b>Fig. 11</b>) Result showed that provided that our hypothesis is correct, our Band-pass Filter could indeed function as we expected.
+
-
</p>
+
-
<img id="FigurePic11" src="https://static.igem.org/mediawiki/2013/e/e2/Peking2013_bandpassfilter_finalfit.png" />
+
-
<p id = "Figure11">
+
-
<b>Figure 11.</b> Result of modeling based on parameters obtained from data fitting mentioned in <b>Figure 10</b>. Clearly a unique output peak is formed. This indicates that our band-pass filter circuit is feasible.
+
-
</p>
+
-
 
+
-
<p id="ReferenceBPF">
+
-
<B>Reference:</B></br>
+
-
[1] SOHKA, Takayuki, et al. An externally tunable bacterial band-pass filter.<I>Proceedings of the National Academy of Sciences</I>, 2009, 106.25: 10135-10140.<br/>
+
-
[2] MA, Wenzhe, et al. Defining network topologies that can achieve biochemical adaptation. <I>Cell</I>, 2009, 138.4: 760-773.<br/>
+
-
[3] BASU, Subhayu, et al. A synthetic multicellular system for programmed pattern formation. <I>Nature</I>, 2005, 434.7037: 1130-1134.<br/>
+
-
</p>
+
</div>
</div>
-
<!--end of parts editing area-->
+
<!--end of model editing area-->
Line 539: Line 455:
-
function MoveInSlide(SlideId)
 
-
{
 
-
$(SlideId).animate({top:"0px"});
 
-
         
 
-
};
 
-
function MoveOutSlide(SlideId)
+
 
-
{
+
 
-
$(SlideId).animate({top:"280px"});
+
-
       
+
-
};
+

Revision as of 13:33, 25 October 2013

Biosensor Fine-tuning

Introduction

Here we take biosensor HbpR as an example to demonstrate how our fine-tuning improves the performance of our biosensors. We constructed Ordinary Differential Equations (ODEs) based on single molecule kinetics and simulated the performance of our biosensors under different Pc and RBS strength with the steady state solution of the ODEs.

Figure1.Genetic regulation circuit of the biosensor HbpR.


Construction of ODEs

The genetic regulation circuit is shown in figure 1 HbpR is constitutively expressed under the constitutive promoter(Pc). When the cell is exposed to its inducer X, HbpR can bind to X and form a complex HbpRX. Considering cooperation may exists in this binding reaction, the steady state concentration of HbpRX can be written as

Where KH is a constant and nH is the Hill coefficient of this reaction.

HbpRX is an active state, which can activate its promoter PHbpR. We assume that there are a small proportion of HbpR can change into an active state without binding to its inducer X. Therefore, the concentraion of HbpR in active state(HbpRA) can be writen as

Where α is the proportion of HbpR in active state without binding to X.

HbpRA can bind to its promoter PHbpR and initiate the transcription. Concerning the number of HbpRA is much larger than the number of PHbpR the concentration of HbpRAPHbpR complex satisfies

Where kP1 and kP2 are the reaction rate constants of forward and reverse reactions.

The concentration of mRNA satisfies

Where Am and Dm are constants.

The concentraion of mRNA ribosome complex(mRNArib) satisfies

Where kRBS1 is the reaction rate constant of the forward reaction which is influened by the RBS strength and kR2 is the reaction rate constant of the reverse reaction.

The concentration of sfGFP satisfies

Where AG and DG are constants.

The fluorescence can be written as

Where AF is a constant.

We deduced the steady state solution of the ODEs above

Where




Constitutive Promoter Fine-tuning

The performance of the HbpR biosensor under different constitutive promoters are simulated by changing the parameter[HbpR](the concentration of HbpR), which variates under different strength of constitutive promoters(Pc).

The modeling result(Figure 2) shows that the fluorescence increaces as the Pc strength increaces. But a medium strength of Pc gives the highest induction ratio.

Figure 2. The modeling result of the constitutive promoter fine-tuning. The dose-response curve is shown in the left plot, where the asterisks are the experimental data. The induction ratio curve is shown in the right plot.


RBS Fine-tuning

The performance of the HbpR biosensor under different ribosome binding sites(RBSs) are simulated by changing the parameter KRBS, which is determined by the strength of RBS.

The modeling result(Figure 3) shows that the fluorescence increaces as the RBS strength increaces. But a medium strength of RBS gives the highest induction ratio.

Figure 3. The modeling result for RBS fine-tuning. (a), (b) The dose-response curve, where the asterisks are the experimental data. (c) The induction ratio curve.




Why Medium Strength?

Both experimental and modeling result shows that a medium strength of Pc and RBS gives the highest induction ratio. The reason is that a medium strength balances differet leakages. Either too strong or too weak strength will aggravate the influence of a kind of leakage.

When the strength of Pc is too weak, the induction effect is too weak compared with the leakage of promoter PHbpR. When the strength of Pc is too strong, the concentration of HbpR in active state without inducer binding is high enough to saturate the promoter PHbpR (Figure 4).

When the strength of RBS is too weak, the induced fluorescence is overwhelmed by the basal fluorescence. When the strength of RBS is too strong, the translation rate will be saturated by the leakage of promoter PHbpR (Figure 5).

Figure 4. Schematic plots to show why medium strength of Pc gives the highest induction ratio. In the left plot, the dose-response curve of HbpR in active state (HbpRA) under different Pc are plotted in different colors and the lower and upper bounds are denoted in a and b. The right plot shows mRNA expression level in different lower and upper bounds. The induction ratio can be calculated by dividing the fluorescence at b point by the fluorescence at a point.

Figure 5. Schematic plots to show why medium strength of RBS gives the highest induction ratio. In the left plot, the lower and upper bound of mRNA expression level are denoted in a and b. The right plot shows the dose-response curves of mRNA under different RBSs. The induction ratio can be calculated by dividing the fluorescence at b point by the fluorescence at a point.


Parameter Table

ParameterValue
[HbpR]10000 for J23106
256 for J23114
22 for J23113
nH1.7
α0.003
KH0.004
KPH0.005
Km0.005
Leakage0.008
KF1400 for Pc simulation
1900 for RBS simulation
KRBS0.3 for Pc simulation
0.17 for B0034
3.5 for B0032
7 for B0031
BasalFluorescence60 for Pc simulation
2 for RBS simulation

*Parameters are determined from curve fitting. Because the experimental data of Pc fine-tuning and data of RBS fine-tuning are measured in different experiments, KF and BasalFluorescence has different value in Pc and RBS simulation.