Team:Newcastle/Project
From 2013.igem.org
Home | Team | Official Team Profile | Project | Parts Submitted to the Registry | Modeling | Notebook | Safety | Attributions |
---|
Contents |
Overall project
An L-form is a bacterium that has no cell wall. Bacterial morphology is determined by the cell wall, and so their morphology differs from the strain of bacteria from which they are derived, giving rise to a variety of cell sizes. The cell wall is important for cell division. Binary fission is a highly conserved mechanism required for proliferation of almost all cells. Due to the absence of the cell wall, L-forms are easily transformed, so we propose to use inducible L-forms of bacillus subtilis as a novel chassis.
We are separated in to four sub teams: shape-shifting; Shuffling, Recombination & Endosymbiosis; Introducing and Detecting L-forms in Plants; Investigating two-component systems in L-forms.
Project Details
Shuffling, Recombination & Endosymbiosis
Using L-form to perform genetic recombination has been shown to be 20X more efficient than Sexual PCR or any other current techniques. The advantages of using L-form are, it can grow, divide and re-integrate the cell form back. We are looking into two L-form fusion to potentially improve or generate novel functions; and try to create new bacteria strains via (cre-loxP system). Introducing foreign organisms (spores, smaller bacteria) into L-form and to see what happen to it, and triggering internal sporulation. We will also try to model the biophysical mechanism of the L-form cell membrane fusion.
Introducing and Detecting L-forms in Plants
We aim to introduce and detect L-forms in plants using Gus-gene expression.
Shape-shifting
Our aim is to shape the bacteria to fit different molds using the microfluidics system, model the biophysical characteristics of bacterial cell membrane, and see what happens when we switch the cell wall synthesis back on.
Investigating two-component systems in L-forms
Two component systems form a pathway of communication found within bacteria. These rely upon two proteins - a sensor kinase, and a response regulator. The sensor kinase is embedded in the membrane and binds signalling molecules that are external to the cell. Once triggered by external signals, the sensor kinase interacts with the response regulator - an intracellular protein. The response regulator is then able to migrate to gene regulatory regions of DNA - promoters - to influence transcription of specific genes.