Team:Uppsala/metabolic-engineering

From 2013.igem.org

Revision as of 05:59, 29 September 2013 by Sabrijamal (Talk | contribs)

Metabolic Engineering

We have aimed our project at producing food nutrients in bacteria. These nutrients normally exists in for example carrots, tomatoes, garlic, grapes and several other important food. By transferring genes from plants and fruits we can make our bacteria produce vital nutrients and commercially attractive supplements. We alter the metabolic pathways of our bacteria by introducing new genes or by modifying existing pathways.

Organic materia produced by nature is one of our main sources of energy. For billions of years, nature has perfected its machinery. We get fuel from both fossilized organisms and renewable biomateria. All life on earth is dependent of getting the right amount of food and nutrition. As we become more and more people on earth, we need to optimize our techniques for food and nutritional production. This is where we can step in and alter natures machinery.

P-coumaric acid

P-coumaric acid is an antioxidant that is produced from tyrosin by the enzyme Tyrosine ammonia lyase (TAL). This antioxidant has been shown to have many health benefits. For example studies have shown that it can reduce the risk of atherosclerosis and also reduce the risk of stomach cancer. P-coumaric acid can be found foods such as peanuts, garlic, wine and vinegar.

Resveratrol

Resveratrol belongs to a group of molecules known as Phyloalexin which is used by many plants to battle infections of all sorts. Many studies have been done on resveratrol showing it has a wide range of beneficial properties ranging from skin cancer reduction to anti-inflamatory effects and antioxidant properties. Perhaps the most interesting property is that of life extension.

Lycopene

Lycopene is a carotenoid that primarily derives from the xanthophyll group. The precursor responsible for lycopene production is phytoene, when present together with the enzyme CrtE a catalytic reaction takes place and lycopene is produced. Lycopene is an antioxidant that can be found in both vegetables and fruits, it is mostly known for its characteristic red color in tomatoes.

β-carotene

β-carotene is a precursor of substances such as Vitamin A, zeaxanthine and asthaxanthine. β-carotene is a derive from Lycopene and is commonly known for its characteristic orange color, it is found in fruits and vegetables. Vitamin A which is a derive from β-carotene has important health aspects for our skin, different membranes and most commonly known our eyes.

Astaxanthin

Astaxanthin is a carotenoid pigment that derives from the xanthophyll group and is most known for giving the red color of salmon, lobster and shrimp. Astaxanthin is a very strong antioxidant and is produced using the microalgae Haematococcus or synthetically. The substance costs around 2500 US dollars per kg and is often used in fishfarming to give salmon its red color.

Zeaxanthin

Zeaxanthin is a yellow carotenoid derived from the precursor ß-carotene by the enzyme ”Beta-carotene hydroxylase”. Zeaxanthin acts as an antioxidant and can be found in for example peppers, yolk and maize. According to studies zeaxanthin has positive effects on both undamaged and impaired vision and it may prevent age-related macular degeneration (AMD).

Saffron

Saffron is the most expensive spice in the world. It is extracted from the stigmata of Crocus Sativus. The flower can be cultivated in the Mediterranean and Middle East area. The spice is a combination of over 150 different compounds, but the main components are picrocrocin (taste), safranal (aroma) and crocin (colour). These components are all derivatives of zeaxanthin.