Team:Nanjing-China/rib

From 2013.igem.org

Revision as of 07:53, 24 September 2013 by GaoJian NJU (Talk | contribs)

Ribosome Switch
Ribosome switch is used widely in synthetic biology to detect various small molecules. This summer, we chose an efficient ribosome switch which can detect atrazine created via a new method (NAT CHEM BIOL, Joy Sinha. et al., 2010). And then, our team verified the basic parameters about this amazing ribosome switch, including the lowest detect concentration and the induced time.

Experiments and Results
Our team used this kind of ribosome switch which can detect atrazine to control the GFP expression in E.coli. E.coli expressed GFP after 20 hours under 500μM of atrazine, but could not express GFP without atrazine (Fig. 3-4-1). This shows the ribosome switch can be turned on under 500μM of atrazine.



Fig. 3-4-1 Ribosome switch used in our experiments can detect atrazine. (A) The principle of how the ribosome switch works. (B) Observation of GFP under confocal microscope. Ribosome switch can be induced by atrazine under 500μM of atrazine.

Our team used this part to control GFP expression in E.coli. We found all E.coli had expressed GFP under all the concentrations of atrazine, from 1μM to 500μM, in our experiment (Fig. 3-4-2). This data indicates that the ribosome switch can work under 1μM of atrazine.

Fig. 3-4-2 Various concentrations of atrazine were detected after 20h culturing.



Our team used this part to control the GFP expression in E.coli. We found E.coli had merely expressed GFP after 12 hours under 200uM of atrazine. This data elucidates that the ribosome switch can work after 12 hours under 200uM of atrazine.
Fig. 3-4-3 The ribosome switch was induced at different time under 200uM of atrazine.



According to these data, this ribosome switch is more efficient than the one used before. Therefore, we are confident of the fact that we can put this amazing part into detecting atrazine in real life.