Team:Hong Kong HKUST/module3backup
From 2013.igem.org
-
Protein Trafficking
- Overview
- Mechanism of MLS
- Linkage to Project
-
Modules
- FA Quantification & Cell Viability
- FA Sensing Mechanism
- Protein Trafficking
- Glyoxylate Shunt
Protein Trafficking
Overview
In our project, we introduced bacterial enzymes to mammalian cell to modify metabolic pathway. However, unlike bacteria, citric acid cycle in mammalian cells is compartmentalized in mitochondria. The ACE proteins should be targeted to mitochondria for their functionality. To do so, we fused ACE enzymes with Mitochondrial Leader Sequence (MLS).Mechanism of MLS
MLS is attached to the N-terminal of enzyme, and bind to the receptor protein on mitochondrial membrane, and diffuse to contact site where inner and outer membrane fuse, then bring the ACE enzyme into mitochondria. Afterward, it is be cleaved, leaving the enzyme in mitochondria.Linkage to Project
The MLS was cloned from a commercial plasmid, pCMV/myc/mito (Invitrogen) by PCR. For the MLS BioBrick, we have submitted the MLS BioBrick in RFC 10 and RFC 25, the Freiburg format which allows protein fusion, to facilitate other team to fuse the MLS with other protein for purpose of introducing other protein into mitochondria.For characterization, MLS and green fluorescence protein was fused with constitutive mammalian CMV promoter. The promoter was cloned from pEGFP-N1 (Clonetech) in RFC10 format, since such part could not be found in partsregistry. The CMV cloned for our characterization construct was also submitted. The two construct for characterization, the CMV promoter – green fluorescent protein – polyadenylation sequence – pSB1C3 and CMV promoter – mitochondria leader sequence – green fluorescence protein – polyadenylation sequence – pSB1C3 composite parts are also submitted. Click here to see our submitted parts.