Team:INSA Toulouse/contenu/project/references

From 2013.igem.org

(Difference between revisions)
Line 85: Line 85:
     <ul class="arrow">
     <ul class="arrow">
<br> Logic gates
<br> Logic gates
-
       <li><a href="http://www.ncbi.nlm.nih.gov/pubmed/23539178" target="_blank">Bonnet et al. - 2013 - Amplifying Genetic Logic Gates</a></li>
+
       <li><a href="http://www.ncbi.nlm.nih.gov/pubmed/23539178" target="_blank">Bonnet, J.Y., 2013. Amplifying Genetic Logic Gates. Science 340, 599–603.</a></li>
-
       <li><a href="http://www.ncbi.nlm.nih.gov/pubmed/23396014" target="_blank">Siuti et al. - 2013 - Synthetic Circuits Integrating Logic and Memory in Living Cells</a></li>
+
       <li><a href="http://www.ncbi.nlm.nih.gov/pubmed/23396014" target="_blank">Siuti, P., Yazbek, J., Lu, T.K., 2013. Synthetic circuits integrating logic and memory in living cells. Nature Biotechnology 31, 448–452.</a></li>
-
       <li><a href="http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3237015/" target="_blank">Chen et al. - 2011 - Robust Design of Biological Circuits</a></li>
+
       <li><a href="http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3237015/" target="_blank">Bor-Sen Chen, Chih-Yuan Hsu, Jing-Jia Liou, 2011. Robust Design of Biological Circuits: Evolutionary Systems Biology Approach. Journal of Biomedicine & Biotechnology 1–14.</a></li>
-
       <li><a href="http://www.ncbi.nlm.nih.gov/pubmed/23526588" target="_blank">Miyamoto et al. - 2013 - Synthesizing Biomolecule-Based Boolean Logic Gates</a></li>
+
       <li><a href="http://www.ncbi.nlm.nih.gov/pubmed/23526588" target="_blank">Miyamoto, T., Razavi, S., DeRose, R., Inoue, T., 2013. Synthesizing biomolecule-based Boolean logic gates. ACS Synthetic Biology 2, 72–82.</a></li>
<br>
<br>
<br>
<br>
Sensors
Sensors
-
       <li><a href="http://www.ncbi.nlm.nih.gov/pubmed/19109976" target="_blank"> Andreas Möglich et al. - 2009 - Design and Signaling Mechanism of Light-Regulated Histidine Kinases.</a></li>
+
       <li><a href="http://www.ncbi.nlm.nih.gov/pubmed/19109976" target="_blank"> Möglich, A., Ayers, R.A., Moffat, K., 2009. Design and signaling mechanism of light-regulated histidine kinases. J. Mol. Biol. 385, 1433–1444.</a></li>
-
       <li><a href="http://www.ncbi.nlm.nih.gov/pubmed/16306980" target="_blank">Levskaya A. and al. - 2005 - Synthetic biology: engineering Escherichia coli to see light</a></li>
+
       <li><a href="http://www.ncbi.nlm.nih.gov/pubmed/16306980" target="_blank">Levskaya, A., Chevalier, A.A., Tabor, J.J., Simpson, Z.B., Lavery, L.A., Levy, M., Davidson, E.A., Scouras, A., Ellington, A.D., Marcotte, E.M., Voigt, C.A., 2005. Synthetic biology: engineering Escherichia coli to see light. Nature 438, 441–442.</a></li>
<br>
<br>
<br>
<br>
In vitro recombinase characterization protocol
In vitro recombinase characterization protocol
-
       <li><a href="http://www.ncbi.nlm.nih.gov/pubmed/14617171" target="_blank">Kim et al. - 2003 - Mycobacteriophage Bxb1 integrates into the Mycobacterium smegmatis groEL1 gene</a></li>
+
       <li><a href="http://www.ncbi.nlm.nih.gov/pubmed/14617171" target="_blank">Kim, A.I., Ghosh, P., Aaron, M.A., Bibb, L.A., Jain, S., Hatfull, G.F., 2003. Mycobacteriophage Bxb1 integrates into the Mycobacterium smegmatis groEL1 gene. Mol. Microbiol. 50, 463–473.</a></li>
-
       <li><a href="http://www.ncbi.nlm.nih.gov/pubmed/12057961" target="_blank">Stoll et al. - 2002 - Phage TP901-1 site-specific integrase functions in human cells</a></li>
+
       <li><a href="http://www.ncbi.nlm.nih.gov/pubmed/12057961" target="_blank">Stoll, S.M., Ginsburg, D.S., Calos, M.P., 2002. Phage TP901-1 site-specific integrase functions in human cells. J. Bacteriol. 184, 3657–3663.</a></li>
-
       <li><a href="http://www.ncbi.nlm.nih.gov/pubmed/9576912" target="_blank">Thorp et al. - 1998 - In vitro site-specific integration of bacteriophage DNA catalyzed by a recombinase of the resolvase/invertase family</a></li>
+
       <li><a href="http://www.ncbi.nlm.nih.gov/pubmed/9576912" target="_blank">Thorpe, H.M., Smith, M.C., 1998. In vitro site-specific integration of bacteriophage DNA catalyzed by a recombinase of the resolvase/invertase family. Proc. Natl. Acad. Sci. U.S.A. 95, 5505–5510.</a></li>
-
       <li><a href="http://www.ncbi.nlm.nih.gov/pubmed/20298189" target="_blank">Smith et al. - 2010 - Site-specific recombination by phiC31 integrase and other large serine recombinases</a></li>
+
       <li><a href="http://www.ncbi.nlm.nih.gov/pubmed/20298189" target="_blank">Smith, M.C.M., Brown, W.R.A., McEwan, A.R., Rowley, P.A., 2010. Site-specific recombination by phiC31 integrase and other large serine recombinases. Biochem. Soc. Trans. 38, 388–394.</a></li>
-
       <li><a href="http://www.ncbi.nlm.nih.gov/pubmed/10594822" target="_blank">Smith et al. - 1999 - Functional analysis of the FimE integrase of Escherichia coli K-12: isolation of mutant derivatives with altered DNA inversion preferences</a></li>
+
       <li><a href="http://www.ncbi.nlm.nih.gov/pubmed/10594822" target="_blank">Smith, S.G., Dorman, C.J., 1999. Functional analysis of the FimE integrase of Escherichia coli K-12: isolation of mutant derivatives with altered DNA inversion preferences. Mol. Microbiol. 34, 965–979.</a></li>
<br>
<br>
<br>
<br>
Modelling
Modelling
-
<li><a href="" target="_blank"></a></li>
+
<li><a href="" target="_blank">Steindler, L., Venturi, V., 2007. Detection of quorum-sensing N-acyl homoserine lactone signal molecules by bacterial biosensors. FEMS Microbiol. Lett. 266, 1–9.</a></li>
-
<li><a href="" target="_blank"></a></li>
+
<li>Masaro, L., Zhu, X.., 1999. Physical models of diffusion for polymer solutions, gels and solids. Progress in Polymer Science 24, 731–775.<a href="" target="_blank"></a></li>

Revision as of 20:16, 4 October 2013

logo


References