Team:Duke/Modeling/Codes/Thermo2
From 2013.igem.org
(Difference between revisions)
Hyunsoo kim (Talk | contribs) (→Mathematical Modeling of Bistable Toggle Switch) |
Hyunsoo kim (Talk | contribs) (→Mathematical Modeling of Bistable Toggle Switch) |
||
(3 intermediate revisions not shown) | |||
Line 5: | Line 5: | ||
= '''Mathematical Modeling of Bistable Toggle Switch''' = | = '''Mathematical Modeling of Bistable Toggle Switch''' = | ||
- | + | Nns=5*10^6; %Number of non-specific sites | |
- | + | Kb=1.3806*10^-23; %(JK-1) %Boltzman's constant | |
- | + | T=298; %(K) %Temperature in Kelvin | |
- | + | P=3000; %Number of RNA polymerase (2000-4000) | |
- | + | ||
- | + | Kspd=100*10^-9; %dissociation constant for specific binding of polymerase on DNA | |
- | + | Knspd=10000; %dissociation constant for non-specific binding of polymerase on DNA | |
- | + | delEpd=Kb*T*log(Kspd/Knspd); %Binding energy between polymerase and DNA | |
- | + | ||
- | + | Ksrd=(10)*10^-9; %TALE %dissociation constant for specific binding of repressor on DNA | |
- | + | (TALE: 1/150nM~, paper example: 0.02) | |
- | + | Knsrd=10000; %dissociation constant for non-specific binding of repressor on DNA | |
- | + | delErd=Kb*T*log(Ksrd/Knsrd); %Binding energy between repressor and DNA | |
- | + | ||
- | + | Ksrd_strong=(0.1)*10^-9; %TALE %dissociation constant for specific binding of repressor on DNA | |
- | + | (TALE: 1/150nM~, paper example: 0.02) --> weaker binding (x0.1) | |
- | + | delErd_strong=Kb*T*log(Ksrd_strong/Knsrd); %Binding energy between repressor and DNA | |
- | + | ||
- | + | R=logspace(-6.5, -3,500); %Number of repressors | |
- | + | % R=linspace(0,100); | |
- | + | Freg1=1./(1+(R./Nns).*exp(-delErd/(Kb*T))); %Regulation factor 1x (<1 for repression) | |
- | + | Freg3=(1./(1+(R./Nns).*exp(-delErd/(Kb*T)))).^3; %Regulation factor 3x (<1 for repression) | |
- | + | Freg5=(1./(1+(R./Nns).*exp(-delErd/(Kb*T)))).^5; %Regulation factor 5x (<1 for repression) | |
- | + | ||
- | + | Freg5_0=(1./(1+(R./Nns).*exp(-delErd/(Kb*T)))).^5.*(1./(1+(R./Nns).*exp(-delErd_strong/(Kb*T)))).^0; | |
- | + | %Regulation factor 5x (<1 for repression) | |
- | + | Freg4_1=(1./(1+(R./Nns).*exp(-delErd/(Kb*T)))).^4.*(1./(1+(R./Nns).*exp(-delErd_strong/(Kb*T)))).^1; | |
- | + | %Regulation factor 5x (<1 for repression) | |
- | + | Freg3_2=(1./(1+(R./Nns).*exp(-delErd/(Kb*T)))).^3.*(1./(1+(R./Nns).*exp(-delErd_strong/(Kb*T)))).^2; | |
- | + | %Regulation factor 5x (<1 for repression) | |
- | + | Freg2_3=(1./(1+(R./Nns).*exp(-delErd/(Kb*T)))).^2.*(1./(1+(R./Nns).*exp(-delErd_strong/(Kb*T)))).^3; | |
- | + | %Regulation factor 5x (<1 for repression) | |
- | + | Freg1_4=(1./(1+(R./Nns).*exp(-delErd/(Kb*T)))).^1.*(1./(1+(R./Nns).*exp(-delErd_strong/(Kb*T)))).^4; | |
- | + | %Regulation factor 5x (<1 for repression) | |
- | + | Freg0_5=(1./(1+(R./Nns).*exp(-delErd/(Kb*T)))).^0.*(1./(1+(R./Nns).*exp(-delErd_strong/(Kb*T)))).^5; | |
- | + | %Regulation factor 5x (<1 for repression) | |
- | + | ||
- | + | p_bound_base=1./(1+(Nns/P)*exp(delEpd/(Kb*T))); %basal level | |
- | + | p_bound_1=1./(1+(Nns./(P.*Freg1)).*exp(delEpd/(Kb*T))); %level with repressor bound (1x) | |
- | + | p_bound_3=(1./(1+(Nns./(P.*Freg3)).*exp(delEpd/(Kb*T)))); %level with repressor bound (3x) | |
- | + | p_bound_5=(1./(1+(Nns./(P.*Freg5)).*exp(delEpd/(Kb*T)))); %level with repressor bound (5x) | |
- | + | ||
- | + | p_bound_5_0=(1./(1+(Nns./(P.*Freg5_0)).*exp(delEpd/(Kb*T)))); %level with repressor bound (5x) | |
- | + | p_bound_4_1=(1./(1+(Nns./(P.*Freg4_1)).*exp(delEpd/(Kb*T)))); %level with repressor bound (5x) | |
- | + | p_bound_3_2=(1./(1+(Nns./(P.*Freg3_2)).*exp(delEpd/(Kb*T)))); %level with repressor bound (5x) | |
- | + | p_bound_2_3=(1./(1+(Nns./(P.*Freg2_3)).*exp(delEpd/(Kb*T)))); %level with repressor bound (5x) | |
- | + | p_bound_1_4=(1./(1+(Nns./(P.*Freg1_4)).*exp(delEpd/(Kb*T)))); %level with repressor bound (5x) | |
- | + | p_bound_0_5=(1./(1+(Nns./(P.*Freg0_5)).*exp(delEpd/(Kb*T)))); %level with repressor bound (5x) | |
- | + | ||
- | + | ||
- | + | ||
- | + | Fold_Change1=p_bound_1./p_bound_base; %Fold Change 1x | |
- | + | Fold_Change3=p_bound_3./p_bound_base; %Fold Change 3x | |
- | + | Fold_Change5=p_bound_5./p_bound_base; %Fold Change 5x | |
- | + | ||
- | + | Fold_Change5_0=p_bound_5_0./p_bound_base; %Fold Change 5x | |
- | + | Fold_Change4_1=p_bound_4_1./p_bound_base; %Fold Change 5x | |
- | + | Fold_Change3_2=p_bound_3_2./p_bound_base; %Fold Change 5x | |
- | + | Fold_Change2_3=p_bound_2_3./p_bound_base; %Fold Change 5x | |
- | + | Fold_Change1_4=p_bound_1_4./p_bound_base; %Fold Change 5x | |
- | + | Fold_Change0_5=p_bound_0_5./p_bound_base; %Fold Change 5x | |
- | + | ||
- | + | fit1=1./(0.0111.*(R).^1+1); | |
- | + | fit3=1./(4.7215e9.*(R).^2.9929+1); | |
- | + | fit5=1./(6.6001e20.*(R).^4.8635+1); | |
- | + | ||
- | + | ||
- | + | figure1=figure(1); | |
- | + | subplot(1,1,1),semilogx(R,Fold_Change0_5,'k.', | |
- | + | R,Fold_Change1_4,'b.',R,Fold_Change2_3,'g.',R,Fold_Change3_2,'y.',R,Fold_Change4_1,'r.',R, | |
- | + | Fold_Change5_0,'m.') | |
- | + | axis([10^-6.5 10^-3 0 1]) | |
- | + | title(char('Thermodynamic Model and Apparent Hill Coefficient','Unbalanced Binding Strengths : Fold | |
- | + | Change vs Repressor Level (Lin - Log)')) | |
- | + | xlabel('R (number of repressor molecules)') | |
- | + | ylabel('Fold-Change of P_b_o_u_n_d') | |
- | + | legend('5xStrong, 0xWeak','4xStrong, 1xWeak', '3xStrong, 2xWeak', '2xStrong, 3xWeak','1xStrong, | |
- | + | 4xWeak','0xStrong, 5xWeak','Location','NorthEastOutside') | |
- | + | ||
- | + | ||
<br><br><br> | <br><br><br> | ||
</div> | </div> |
Latest revision as of 09:48, 22 September 2013
Mathematical Modeling of Bistable Toggle Switch
Nns=5*10^6; %Number of non-specific sites Kb=1.3806*10^-23; %(JK-1) %Boltzman's constant T=298; %(K) %Temperature in Kelvin P=3000; %Number of RNA polymerase (2000-4000) Kspd=100*10^-9; %dissociation constant for specific binding of polymerase on DNA Knspd=10000; %dissociation constant for non-specific binding of polymerase on DNA delEpd=Kb*T*log(Kspd/Knspd); %Binding energy between polymerase and DNA Ksrd=(10)*10^-9; %TALE %dissociation constant for specific binding of repressor on DNA (TALE: 1/150nM~, paper example: 0.02) Knsrd=10000; %dissociation constant for non-specific binding of repressor on DNA delErd=Kb*T*log(Ksrd/Knsrd); %Binding energy between repressor and DNA Ksrd_strong=(0.1)*10^-9; %TALE %dissociation constant for specific binding of repressor on DNA (TALE: 1/150nM~, paper example: 0.02) --> weaker binding (x0.1) delErd_strong=Kb*T*log(Ksrd_strong/Knsrd); %Binding energy between repressor and DNA R=logspace(-6.5, -3,500); %Number of repressors % R=linspace(0,100); Freg1=1./(1+(R./Nns).*exp(-delErd/(Kb*T))); %Regulation factor 1x (<1 for repression) Freg3=(1./(1+(R./Nns).*exp(-delErd/(Kb*T)))).^3; %Regulation factor 3x (<1 for repression) Freg5=(1./(1+(R./Nns).*exp(-delErd/(Kb*T)))).^5; %Regulation factor 5x (<1 for repression) Freg5_0=(1./(1+(R./Nns).*exp(-delErd/(Kb*T)))).^5.*(1./(1+(R./Nns).*exp(-delErd_strong/(Kb*T)))).^0; %Regulation factor 5x (<1 for repression) Freg4_1=(1./(1+(R./Nns).*exp(-delErd/(Kb*T)))).^4.*(1./(1+(R./Nns).*exp(-delErd_strong/(Kb*T)))).^1; %Regulation factor 5x (<1 for repression) Freg3_2=(1./(1+(R./Nns).*exp(-delErd/(Kb*T)))).^3.*(1./(1+(R./Nns).*exp(-delErd_strong/(Kb*T)))).^2; %Regulation factor 5x (<1 for repression) Freg2_3=(1./(1+(R./Nns).*exp(-delErd/(Kb*T)))).^2.*(1./(1+(R./Nns).*exp(-delErd_strong/(Kb*T)))).^3; %Regulation factor 5x (<1 for repression) Freg1_4=(1./(1+(R./Nns).*exp(-delErd/(Kb*T)))).^1.*(1./(1+(R./Nns).*exp(-delErd_strong/(Kb*T)))).^4; %Regulation factor 5x (<1 for repression) Freg0_5=(1./(1+(R./Nns).*exp(-delErd/(Kb*T)))).^0.*(1./(1+(R./Nns).*exp(-delErd_strong/(Kb*T)))).^5; %Regulation factor 5x (<1 for repression) p_bound_base=1./(1+(Nns/P)*exp(delEpd/(Kb*T))); %basal level p_bound_1=1./(1+(Nns./(P.*Freg1)).*exp(delEpd/(Kb*T))); %level with repressor bound (1x) p_bound_3=(1./(1+(Nns./(P.*Freg3)).*exp(delEpd/(Kb*T)))); %level with repressor bound (3x) p_bound_5=(1./(1+(Nns./(P.*Freg5)).*exp(delEpd/(Kb*T)))); %level with repressor bound (5x) p_bound_5_0=(1./(1+(Nns./(P.*Freg5_0)).*exp(delEpd/(Kb*T)))); %level with repressor bound (5x) p_bound_4_1=(1./(1+(Nns./(P.*Freg4_1)).*exp(delEpd/(Kb*T)))); %level with repressor bound (5x) p_bound_3_2=(1./(1+(Nns./(P.*Freg3_2)).*exp(delEpd/(Kb*T)))); %level with repressor bound (5x) p_bound_2_3=(1./(1+(Nns./(P.*Freg2_3)).*exp(delEpd/(Kb*T)))); %level with repressor bound (5x) p_bound_1_4=(1./(1+(Nns./(P.*Freg1_4)).*exp(delEpd/(Kb*T)))); %level with repressor bound (5x) p_bound_0_5=(1./(1+(Nns./(P.*Freg0_5)).*exp(delEpd/(Kb*T)))); %level with repressor bound (5x) Fold_Change1=p_bound_1./p_bound_base; %Fold Change 1x Fold_Change3=p_bound_3./p_bound_base; %Fold Change 3x Fold_Change5=p_bound_5./p_bound_base; %Fold Change 5x Fold_Change5_0=p_bound_5_0./p_bound_base; %Fold Change 5x Fold_Change4_1=p_bound_4_1./p_bound_base; %Fold Change 5x Fold_Change3_2=p_bound_3_2./p_bound_base; %Fold Change 5x Fold_Change2_3=p_bound_2_3./p_bound_base; %Fold Change 5x Fold_Change1_4=p_bound_1_4./p_bound_base; %Fold Change 5x Fold_Change0_5=p_bound_0_5./p_bound_base; %Fold Change 5x fit1=1./(0.0111.*(R).^1+1); fit3=1./(4.7215e9.*(R).^2.9929+1); fit5=1./(6.6001e20.*(R).^4.8635+1); figure1=figure(1); subplot(1,1,1),semilogx(R,Fold_Change0_5,'k.', R,Fold_Change1_4,'b.',R,Fold_Change2_3,'g.',R,Fold_Change3_2,'y.',R,Fold_Change4_1,'r.',R, Fold_Change5_0,'m.') axis([10^-6.5 10^-3 0 1]) title(char('Thermodynamic Model and Apparent Hill Coefficient','Unbalanced Binding Strengths : Fold Change vs Repressor Level (Lin - Log)')) xlabel('R (number of repressor molecules)') ylabel('Fold-Change of P_b_o_u_n_d') legend('5xStrong, 0xWeak','4xStrong, 1xWeak', '3xStrong, 2xWeak', '2xStrong, 3xWeak','1xStrong, 4xWeak','0xStrong, 5xWeak','Location','NorthEastOutside')