Team:USTC CHINA/Project/ProjectDetails/Design
From 2013.igem.org
(Difference between revisions)
Line 89: | Line 89: | ||
<br><br> | <br><br> | ||
<h3>4.2 Kill Switch</h3> | <h3>4.2 Kill Switch</h3> | ||
- | <img src="https://static.igem.org/mediawiki/2013/ | + | <img src="https://static.igem.org/mediawiki/2013/f/f0/2013ustc-china_sdpABC.png" width="580" height="100"/> |
<br><br> | <br><br> | ||
<p>In B.subtilis, when it comes to the stationary phase, the environmental pressure increases and nutrition becomes limited, so B.subtilis begins to produce spore. Now the community will be divided into two different parts. One of them are trying to kill others to get enough nutrient, delaying the production of spores and achieving a competitive advantage. Killing is mediated by the exported toxic protein SdpC. SdpI will appear on the membrane surface to avoid itself from being damaged. SdpI could bind free SdpC and autopressor SdpR, to remove inhibition of SdpR against I and R, to produce more SdpI to offset SdpC, finally guaranteeing the subgroup alive, thereby delaying the spores production.We transfer SdpC which is fused by promoter SdpI/R into high copy plasmids in order to damage the balance of the system, thereby killing whole colony. When SdpC appears, SdpI on the membrane will bind free SdpC and adsorb SdpR to cease its inhibition against SdpI P/R, trying to produce more SdpI. At the same time, it will activate the promoter SdpR/I in our circuits and generate more SdpC. The system would fall into an infinite loop, and according to our modeling,the amount of SdpC increases beyond the ability of SdpI. Thus, the cells with protection mechanism will crack and die because of too much SdpC. All of them formed the killing device.</p> | <p>In B.subtilis, when it comes to the stationary phase, the environmental pressure increases and nutrition becomes limited, so B.subtilis begins to produce spore. Now the community will be divided into two different parts. One of them are trying to kill others to get enough nutrient, delaying the production of spores and achieving a competitive advantage. Killing is mediated by the exported toxic protein SdpC. SdpI will appear on the membrane surface to avoid itself from being damaged. SdpI could bind free SdpC and autopressor SdpR, to remove inhibition of SdpR against I and R, to produce more SdpI to offset SdpC, finally guaranteeing the subgroup alive, thereby delaying the spores production.We transfer SdpC which is fused by promoter SdpI/R into high copy plasmids in order to damage the balance of the system, thereby killing whole colony. When SdpC appears, SdpI on the membrane will bind free SdpC and adsorb SdpR to cease its inhibition against SdpI P/R, trying to produce more SdpI. At the same time, it will activate the promoter SdpR/I in our circuits and generate more SdpC. The system would fall into an infinite loop, and according to our modeling,the amount of SdpC increases beyond the ability of SdpI. Thus, the cells with protection mechanism will crack and die because of too much SdpC. All of them formed the killing device.</p> | ||
- | <img src="https://static.igem.org/mediawiki/ | + | <img src="https://static.igem.org/mediawiki/igem.org/8/89/2013ustc-china_killswitch1.png" width="580" height="180"/> |
- | + | ||
<p>We Also designed a test circuit, which contains promotor grac and sdpABC only, aiming to determine the ability of SdpC.</p> | <p>We Also designed a test circuit, which contains promotor grac and sdpABC only, aiming to determine the ability of SdpC.</p> | ||
Revision as of 16:58, 27 September 2013