Team:HZAU-China/Modeling/Cellular automata

From 2013.igem.org

(Difference between revisions)
 
(45 intermediate revisions not shown)
Line 59: Line 59:
ul.menu:after{content:"";display:block;height:0;clear:both;visibility:hidden;}
ul.menu:after{content:"";display:block;height:0;clear:both;visibility:hidden;}
ul.menu,
ul.menu,
-
ul.menu ul {padding:0;margin:0;list-style:none;position:;width:220px;background:#ddd;font-family:arial, sans-serif;}
+
ul.menu ul {padding:0;margin:0;list-style:none;position:;width:220px;background:#d3f18c;font-family:arial, sans-serif;}
ul.menu {z-index:100;padding:10px;margin:0 auto;}
ul.menu {z-index:100;padding:10px;margin:0 auto;}
ul.menu ul {z-index:50;
ul.menu ul {z-index:50;
Line 71: Line 71:
ul.menu > li {margin-top:2px;font-size:12px;}
ul.menu > li {margin-top:2px;font-size:12px;}
ul.menu > li a {font:normal 16px/29px arial, sans-serif;color:#fff;text-decoration:none;}
ul.menu > li a {font:normal 16px/29px arial, sans-serif;color:#fff;text-decoration:none;}
-
ul.menu label.open {display:block;background:#c00 no-repeat 170px 12px;line-height:30px;position:relative;z-
+
ul.menu label.open {display:block;background:#517b1f no-repeat 170px 12px;line-height:30px;position:relative;z-
-
 
+
index:100;font:normal 12px/30px arial, sans-serif;color:#fff;border-radius:10px 10px 0 0;}
index:100;font:normal 12px/30px arial, sans-serif;color:#fff;border-radius:10px 10px 0 0;}
-
ul.menu label.open b {color:#ff0;}
+
ul.menu span {display:block;background:#517b1f;line-height:30px;position:relative;z-index:100;font-size: 16px;padding-left:10px;}
-
ul.menu span {display:block;background:#c00;line-height:30px;position:relative;z-index:100;font-size: 16px;padding-left:10px;}
+
ul.menu label img {position:absolute;left:0;top:0;width:100%;height:30px;}
ul.menu label img {position:absolute;left:0;top:0;width:100%;height:30px;}
ul.menu ul li {margin-top:-30px;
ul.menu ul li {margin-top:-30px;
Line 84: Line 82:
transition: 0.5s;
transition: 0.5s;
}
}
-
ul.menu ul li a {display:block;font:normal 16px/29px arial, sans-serif;color:#000;background:#ccc;}
+
ul.menu ul li a {display:block;font:normal 16px/29px arial, sans-serif;color:#000;background:#b3e24b;}
-
ul.menu ul li a:hover {background:#ddd;}
+
ul.menu ul li a:hover {background:#d3f18c;}
ul.menu input {position:absolute;left:-9999px;}
ul.menu input {position:absolute;left:-9999px;}
ul.menu li input:checked + label {background:#069;}
ul.menu li input:checked + label {background:#069;}
-
ul.menu li input:checked ~ ul {background:#ccc;padding-bottom:10px;}
+
ul.menu li input:checked ~ ul {background:#b3e24b;padding-bottom:10px;}
ul.menu li input:checked ~ ul li {margin-top:0;}
ul.menu li input:checked ~ ul li {margin-top:0;}
ul.menu label.close {display:block;width:200px;height:30px;background:transparent url("/jscss/demoimg/201208/u-arrow.gif")  
ul.menu label.close {display:block;width:200px;height:30px;background:transparent url("/jscss/demoimg/201208/u-arrow.gif")  
Line 98: Line 96:
ul.menu input.close:checked ~ ul li {margin-top:-30px;}
ul.menu input.close:checked ~ ul li {margin-top:-30px;}
</style>
</style>
 +
<script>
<script>
Line 120: Line 119:
         <li><a href="https://2013.igem.org/Team:HZAU-China/Modeling"><span>Overview</span></a></li>
         <li><a href="https://2013.igem.org/Team:HZAU-China/Modeling"><span>Overview</span></a></li>
         <li><a href="https://2013.igem.org/Team:HZAU-China/Modeling/Gray logistic"><span>Gray logistic</span></a></li>  
         <li><a href="https://2013.igem.org/Team:HZAU-China/Modeling/Gray logistic"><span>Gray logistic</span></a></li>  
-
         <li><a href="https://2013.igem.org/Team:HZAU-China/Modeling/Immune responce"><span>Immune responce</span></a></li>
+
         <li><a href="https://2013.igem.org/Team:HZAU-China/Modeling/Immune responce"><span>Immune response</span></a></li>
-
         <li><a href="https://2013.igem.org/Team:HZAU-China/Modeling/Cellular automata"><span style="font-size:19px;color=#fff;">Cellular automata</span></a></li>
+
         <li><a href="https://2013.igem.org/Team:HZAU-China/Modeling/Cellular automaton"><span style="font-size:19px;color=#fff;">Cellular automaton</span></a></li>
          
          
       </body>
       </body>
Line 127: Line 126:
     <div id="paragraphs">
     <div id="paragraphs">
     <p><br></p>
     <p><br></p>
-
     <center><span style="font-size:46px;font-family:Cambria;margin-top:10px;line-height:80%">Cellular automata</span></center>
+
     <center><span style="font-size:46px;font-family:Cambria;margin-top:10px;line-height:80%">Cellular automaton</span></center>
     <p><br></p>
     <p><br></p>
   
   
-
<h3>Aim:</h3>
+
<h3><big><big>Aim:</big></big></h3>
<p style="font-size:16px;font-family:arial, sans-serif;">To know how the number of immunized dogs changes over time.</p>
<p style="font-size:16px;font-family:arial, sans-serif;">To know how the number of immunized dogs changes over time.</p>
-
<h3>Steps:</h3>
+
<h3><big><big>Steps:</big></big></h3>
-
<p style="font-size:16px;font-family:arial, sans-serif;">1. Define the cellular automata;</p>
+
<p style="font-size:16px;font-family:arial, sans-serif;">1. Define the cellular automaton;</p>
-
<p style="font-size:16px;font-family:arial, sans-serif;">2. Determine the related parameters of cellular automata;</p>
+
<p style="font-size:16px;font-family:arial, sans-serif;">2. Determine the related parameters of cellular automaton;</p>
-
<p style="font-size:16px;font-family:arial, sans-serif;">3. Determine the rules of cellular automata;</p>
+
<p style="font-size:16px;font-family:arial, sans-serif;">3. Determine the rules of cellular automaton;</p>
<p style="font-size:16px;font-family:arial, sans-serif;">4. Analyze the results of the model.</p>
<p style="font-size:16px;font-family:arial, sans-serif;">4. Analyze the results of the model.</p>
-
<h3>Background:</h3>
+
<h3><big><big>Background:</big></big></h3>
<p style="font-size:16px;font-family:arial, sans-serif;">Cellular automata are discrete dynamical systems that can simulate complex behaviors by animating cells on a lattice based on simple, local rules. There are numerous applications of cellular automata, such as simulating traffic flows, network transmission and digital music. In our project, cellular automata are used for modeling the spread of immunity in stray dogs.</p>
<p style="font-size:16px;font-family:arial, sans-serif;">Cellular automata are discrete dynamical systems that can simulate complex behaviors by animating cells on a lattice based on simple, local rules. There are numerous applications of cellular automata, such as simulating traffic flows, network transmission and digital music. In our project, cellular automata are used for modeling the spread of immunity in stray dogs.</p>
-
<h2>Definition of the cellular automata</h2>
+
<h3><big><big>Definition of the cellular automaton:</big></big></h3>
-
<p style="font-size:16px;font-family:arial, sans-serif;">Our cellular automata contains cellular, the state of the cellular, neighborhood and the rules of the cells’ states updated over time.</p>
+
-
<p style="font-size:16px;font-family:arial, sans-serif;"> A=(<i>T,S,PRO,N</i>) where <i>T</i> stands for a cell to maintain its current state, <i>S</i> stands for the state of the cell, <i>PRO</i> stands for cells’ ability for spreading immunity, and <i>N</i> is the number of the cells.</p>
 
<p style="font-size:16px;font-family:arial, sans-serif;"><b>Cell</b>: An individual stray dog.</p>
<p style="font-size:16px;font-family:arial, sans-serif;"><b>Cell</b>: An individual stray dog.</p>
Line 151: Line 148:
<p style="font-size:16px;font-family:arial, sans-serif;"><b>Cellular Space</b>: A collection of cells distributed in a 2-dimentional space. The cellular space is divided into square lattice. Suppose the size of the cellular space is <i>N</i> = m*m where m is the number of rows (columns) and 100 in our model.</p>
<p style="font-size:16px;font-family:arial, sans-serif;"><b>Cellular Space</b>: A collection of cells distributed in a 2-dimentional space. The cellular space is divided into square lattice. Suppose the size of the cellular space is <i>N</i> = m*m where m is the number of rows (columns) and 100 in our model.</p>
-
<p style="font-size:16px;font-family:arial, sans-serif;"><b>Cellular State</b>: Assume that the state variable of the cell is <i>Sij(t)</i> where <i>i</i> and <i>j</i> indicate row <i>i</i> and column <i>j</i> in the cellular space and t is time. <i>S</i> has 3 values of {0, 1, 2} where 0 represents a dog without immunity and 1 represents that a dog is in the process of obtaining immunity and 2 represents a state that a dog has been immunized to the rabies virus.</p>
+
<p style="font-size:16px;font-family:arial, sans-serif;"><b>Cellular State</b>: Assume that the state variable of the cell is <i>S<sub>ij</sub>(t)</i> where <i>i</i> and <i>j</i> indicate row <i>i</i> and column <i>j</i> in the cellular space and t is time. <i>S</i> has 3 values of {0, 1, 2} where 0 represents a dog without immunity and 1 represents that a dog is in the process of obtaining immunity and 2 represents a state that a dog has been immunized to the rabies virus.</p>
<p style="font-size:16px;font-family:arial, sans-serif;"><b>Neighbor</b>: In our model, the dimension of the cellular space is two. Around each cell, there are eight cells as neighbors. So the current states of the present cell and its 8 neighbors determine its state of the next moment.</p>
<p style="font-size:16px;font-family:arial, sans-serif;"><b>Neighbor</b>: In our model, the dimension of the cellular space is two. Around each cell, there are eight cells as neighbors. So the current states of the present cell and its 8 neighbors determine its state of the next moment.</p>
Line 164: Line 161:
<p style="font-size:16px;font-family:arial, sans-serif;"><b>The ability for spreading immunity</b>: A dog has the ability to spread immunity if it is in the process of obtaining immunity or has been immunized. The variable for the expression of this ability is <i>PRO</i> whose values are between 0 and 1.</p>
<p style="font-size:16px;font-family:arial, sans-serif;"><b>The ability for spreading immunity</b>: A dog has the ability to spread immunity if it is in the process of obtaining immunity or has been immunized. The variable for the expression of this ability is <i>PRO</i> whose values are between 0 and 1.</p>
-
<p style="font-size:16px;font-family:arial, sans-serif;"><b>Value</b>: If <i>PRO</i> increases to <i>value1</i>, the state-1 will be turned to state-2. If <i>PRO</i> decreases to <i>value2</i>, the state-2 will be turned to state-1.</p>
+
<p style="font-size:16px;font-family:arial, sans-serif;"><b>Value</b>: If <i>PRO</i> increases to <i>value1</i>, the state-1 will turn to state-2. If <i>PRO</i> decreases to <i>value2</i>, the state-2 will turn to state-1.</p>
<p style="font-size:16px;font-family:arial, sans-serif;"><b>The duration for a cell to maintain its state</b>: The time for a cell to maintain its state in state-1 and state-2 are expressed as <i>T1</i> and <i>T2</i>, respectively. Staying in different state, a cell has different ability to spread the engineered bacteria.</p>
<p style="font-size:16px;font-family:arial, sans-serif;"><b>The duration for a cell to maintain its state</b>: The time for a cell to maintain its state in state-1 and state-2 are expressed as <i>T1</i> and <i>T2</i>, respectively. Staying in different state, a cell has different ability to spread the engineered bacteria.</p>
-
<h2>Evolution rules</h2>
+
<h3><big><big>Evolution rules:</big></big></h3>
<p style="font-size:16px;font-family:arial, sans-serif;"><b>Free Walking</b>: A certain percentage of cells will walk freely before every update. The cells which will travel are randomly selected. The travel distance is a random integer ranging from 1 to 20.</p>
<p style="font-size:16px;font-family:arial, sans-serif;"><b>Free Walking</b>: A certain percentage of cells will walk freely before every update. The cells which will travel are randomly selected. The travel distance is a random integer ranging from 1 to 20.</p>
-
<p style="font-size:16px;font-family:arial, sans-serif;"><b>Updating Rules</b>: The state transition of a cell depends on the current states of itself and its neighbors. The impact of a neighbor on the transition rate <i>(PRO)</i> of the present cell is inversely proportional to their Euclidean distance. The Euclidean distance of adjacent cells is 1 while that of a diagonal is <p  style="text-align:center;"><a><img width="15" src="https://static.igem.org/mediawiki/2013/1/1e/%E5%9B%BE%E7%89%877.png" >. k is the spread coefficient of adjacent cells.The calculation formula of <i>PRO</i> is as follows:</p>
+
<p style="font-size:16px;font-family:arial, sans-serif;"><b>Updating Rules</b>: The state transition of a cell depends on the current states of itself and its neighbors. The impact of a neighbor on the transition rate <i>(PRO)</i> of the present cell is inversely proportional to their Euclidean distance. The Euclidean distance of adjacent cells is 1 while that of a diagonal is <img width="16" src="https://static.igem.org/mediawiki/2013/d/d3/Sqrt2.png" >. k is the spread coefficient that mesures the degree of impact that the adjacent neighbor cells have on the present cell.The calculation formula of <i>PRO</i> is as follows:</p>
<p  style="text-align:center;"><a><img width="550" src="https://static.igem.org/mediawiki/2013/1/10/Yuebao1.png" ></a></br></p>
<p  style="text-align:center;"><a><img width="550" src="https://static.igem.org/mediawiki/2013/1/10/Yuebao1.png" ></a></br></p>
-
<p  style="text-align:center;"><a><img width="550" src="https://static.igem.org/mediawiki/2013/9/92/Yuebao2.png" ></a></br></p>
+
<p  style="text-align:center;"><a><img width="550" src="https://static.igem.org/mediawiki/2013/e/e6/Hongping_g.png" ></a></br></p>
<p style="font-size:16px;font-family:arial, sans-serif;">The rules of update are as follows:</p>
<p style="font-size:16px;font-family:arial, sans-serif;">The rules of update are as follows:</p>
Line 204: Line 201:
     <div id="pic02">
     <div id="pic02">
         <p  style="text-align:center;"><a><img width="250" src="https://static.igem.org/mediawiki/2013/1/1b/Yuanbao410.png" ></a></br></p>
         <p  style="text-align:center;"><a><img width="250" src="https://static.igem.org/mediawiki/2013/1/1b/Yuanbao410.png" ></a></br></p>
-
         <p style="font-size:13px;font-family:arial, sans-serif;text-align:center;">Figure 3D. The immunity distribution after 410days.</p>
+
         <p style="font-size:13px;font-family:arial, sans-serif;text-align:center;">Figure 3D. The immunity distribution after 410 days.</p>
     </div>
     </div>
</div>
</div>
Line 210: Line 207:
-
<p style="font-size:16px;font-family:arial, sans-serif;">The celadon cell shows the dog is in state 1. The bright green cell shows the dog is in state-2. The dog in state-2 has higher immunity. Initially, we put a certain percentage of immune dogs (in state-2) into an area. The immunity will spread around centered on the immune dogs. The third picture shows us that the dogs in the area are in higher level of immune state. Subsequently, the immunity comes back to a lower level. Then, it returns to high level again. The immunity will fluctuate but with a decreasing amplitude. If the value of   is higher than value2, the dog has immune power. As the extension of time, the immunity of the whole area converges to a certain level. </p>
+
<p style="font-size:16px;font-family:arial, sans-serif;">The celadon cells show the dogs is in state-1 and the bright green cells show the dogs is in state-2. The dog in state-2 has higher immunity. Initially, we put a certain percentage of immune dogs (in state-2) into an area. The immunity will spread around centered on the immune dogs. Figure 3C shows us that the dogs in the area are in higher level of immune state. Subsequently, the immunity comes back to a lower level. Then, it returns to high level again. The immunity will fluctuate but with a decreasing amplitude. If the value of <i>PRO</i> is higher than value2, the dog has immune power. As the extension of time, the immunity of the whole area converges to a certain level. </p>
<p style="font-size:16px;font-family:arial, sans-serif;">The simulation result is shown in Figure 4.</p>   
<p style="font-size:16px;font-family:arial, sans-serif;">The simulation result is shown in Figure 4.</p>   
Line 217: Line 214:
<p style="font-size:13px;font-family:arial, sans-serif;text-align:center;">Figure 4. The time course of the percentage of immune dogs in an area.</p>
<p style="font-size:13px;font-family:arial, sans-serif;text-align:center;">Figure 4. The time course of the percentage of immune dogs in an area.</p>
-
<h3>Reference:</h3>
+
<h3><big><big>Reference:</big></big></h3>
-
<p style="font-size:16px;font-family:arial, sans-serif;">1.Cornell University BioNB 441Cellular Automata in Matlab <a href="http://instruct1.cit.cornell.edu/courses/bionb441/CA/">http://instruct1.cit.cornell.edu/courses/bionb441/CA/</a></p>
+
<p style="font-size:12px;font-family:arial,sans-serif;">
-
<p style="font-size:16px;font-family:arial, sans-serif;">2.YU Lei, XUE Huifeng et al. Epidemic spread model based on cellular automata. Computer Engineering and Applications, 2007, 43(2):196-198.</p>
+
1.Cornell University BioNB 441Cellular Automaton in Matlab: http://instruct1.cit.cornell.edu/courses/bionb441/CA/.</p>
-
<p style="font-size:16px;font-family:arial, sans-serif;">3.YuXin,Duan Xiaodong et Cellular Automata Model to Simulate the Infect of the Epidemic Diseases Computer Engineering and Applications ,2005.2 205- 209. </p>
+
<p style="font-size:12px;font-family:arial, sans-serif;">
-
<p style="font-size:16px;font-family:arial, sans-serif;">4.WHO (2010) Rabies, Available: http://www.who.int/mediacentre/factsheets/fs099/en/ Updated September 2010.Accessed 2011 Jun 1.</p>
+
2.YU Lei, XUE Huifeng et al. Epidemic spread model based on cellular automaton. Computer Engineering and Applications, 2007, 43(2):196-198. (In Chinese)</p>
 +
<p style="font-size:12px;font-family:arial, sans-serif;">
 +
3.YuXin,Duan Xiaodong et Cellular Automaton Model to Simulate the Infect of the Epidemic Diseases Computer Engineering and Applications ,2005.2 205- 209. (In Chinese)</p>
 +
<p style="font-size:12px;font-family:arial, sans-serif;">
 +
4.WHO (2010) Rabies, Available: http://www.who.int/mediacentre/factsheets/fs099/en/ Updated September 2010.Accessed 2011 Jun 1.</p>
-
   <math alt="Square root of pi">\sqrt{\pi}</math>
+
    
     </div>
     </div>

Latest revision as of 03:37, 28 September 2013


Cellular automaton


Aim:

To know how the number of immunized dogs changes over time.

Steps:

1. Define the cellular automaton;

2. Determine the related parameters of cellular automaton;

3. Determine the rules of cellular automaton;

4. Analyze the results of the model.

Background:

Cellular automata are discrete dynamical systems that can simulate complex behaviors by animating cells on a lattice based on simple, local rules. There are numerous applications of cellular automata, such as simulating traffic flows, network transmission and digital music. In our project, cellular automata are used for modeling the spread of immunity in stray dogs.

Definition of the cellular automaton:

Cell: An individual stray dog.

Cellular Space: A collection of cells distributed in a 2-dimentional space. The cellular space is divided into square lattice. Suppose the size of the cellular space is N = m*m where m is the number of rows (columns) and 100 in our model.

Cellular State: Assume that the state variable of the cell is Sij(t) where i and j indicate row i and column j in the cellular space and t is time. S has 3 values of {0, 1, 2} where 0 represents a dog without immunity and 1 represents that a dog is in the process of obtaining immunity and 2 represents a state that a dog has been immunized to the rabies virus.

Neighbor: In our model, the dimension of the cellular space is two. Around each cell, there are eight cells as neighbors. So the current states of the present cell and its 8 neighbors determine its state of the next moment.


Figure 1. The cellular neighborhood.

Initial Configuration: A certain number of dogs that have been immunized by our engineered bacteria are put randomly in an area at first moment.

The ability for spreading immunity: A dog has the ability to spread immunity if it is in the process of obtaining immunity or has been immunized. The variable for the expression of this ability is PRO whose values are between 0 and 1.

Value: If PRO increases to value1, the state-1 will turn to state-2. If PRO decreases to value2, the state-2 will turn to state-1.

The duration for a cell to maintain its state: The time for a cell to maintain its state in state-1 and state-2 are expressed as T1 and T2, respectively. Staying in different state, a cell has different ability to spread the engineered bacteria.

Evolution rules:

Free Walking: A certain percentage of cells will walk freely before every update. The cells which will travel are randomly selected. The travel distance is a random integer ranging from 1 to 20.

Updating Rules: The state transition of a cell depends on the current states of itself and its neighbors. The impact of a neighbor on the transition rate (PRO) of the present cell is inversely proportional to their Euclidean distance. The Euclidean distance of adjacent cells is 1 while that of a diagonal is . k is the spread coefficient that mesures the degree of impact that the adjacent neighbor cells have on the present cell.The calculation formula of PRO is as follows:



The rules of update are as follows:


We assume that the value of k is 0.01. With the increase of the number of initial immune dogs, the time needed for an area to reach a safe level (70% of the dogs have been immunized) is decreased. If we want the area to reach a safe level in 100 days, the percentage of immune dogs initially put should be larger than 1.2%.


Figure 2. The time (number of days) needed for an area to reach a safe level in response to the change of the initial percentage of immune dogs.


Suppose the amount of initial immune dogs is 1.2%, the simulation results are as follows:


Figure 3A. The initial distribution of immunity.


Figure 3B. The immunity distribution after 36 days.


Figure 3C. The immunity distribution after 157 days.


Figure 3D. The immunity distribution after 410 days.

The celadon cells show the dogs is in state-1 and the bright green cells show the dogs is in state-2. The dog in state-2 has higher immunity. Initially, we put a certain percentage of immune dogs (in state-2) into an area. The immunity will spread around centered on the immune dogs. Figure 3C shows us that the dogs in the area are in higher level of immune state. Subsequently, the immunity comes back to a lower level. Then, it returns to high level again. The immunity will fluctuate but with a decreasing amplitude. If the value of PRO is higher than value2, the dog has immune power. As the extension of time, the immunity of the whole area converges to a certain level.

The simulation result is shown in Figure 4.


Figure 4. The time course of the percentage of immune dogs in an area.

Reference:

1.Cornell University BioNB 441Cellular Automaton in Matlab: http://instruct1.cit.cornell.edu/courses/bionb441/CA/.

2.YU Lei, XUE Huifeng et al. Epidemic spread model based on cellular automaton. Computer Engineering and Applications, 2007, 43(2):196-198. (In Chinese)

3.YuXin,Duan Xiaodong et Cellular Automaton Model to Simulate the Infect of the Epidemic Diseases Computer Engineering and Applications ,2005.2 205- 209. (In Chinese)

4.WHO (2010) Rabies, Available: http://www.who.int/mediacentre/factsheets/fs099/en/ Updated September 2010.Accessed 2011 Jun 1.