Team:HZAU-China/Modeling/Immune responce

From 2013.igem.org

(Difference between revisions)
 
(19 intermediate revisions not shown)
Line 33: Line 33:
ul.menu:after{content:"";display:block;height:0;clear:both;visibility:hidden;}
ul.menu:after{content:"";display:block;height:0;clear:both;visibility:hidden;}
ul.menu,
ul.menu,
-
ul.menu ul {padding:0;margin:0;list-style:none;position:;width:220px;background:#ddd;font-family:arial, sans-serif;}
+
ul.menu ul {padding:0;margin:0;list-style:none;position:;width:220px;background:#d3f18c;font-family:arial, sans-serif;}
ul.menu {z-index:100;padding:10px;margin:0 auto;}
ul.menu {z-index:100;padding:10px;margin:0 auto;}
ul.menu ul {z-index:50;
ul.menu ul {z-index:50;
Line 45: Line 45:
ul.menu > li {margin-top:2px;font-size:12px;}
ul.menu > li {margin-top:2px;font-size:12px;}
ul.menu > li a {font:normal 16px/29px arial, sans-serif;color:#fff;text-decoration:none;}
ul.menu > li a {font:normal 16px/29px arial, sans-serif;color:#fff;text-decoration:none;}
-
ul.menu label.open {display:block;background:#c00 no-repeat 170px 12px;line-height:30px;position:relative;z-
+
ul.menu label.open {display:block;background:#517b1f no-repeat 170px 12px;line-height:30px;position:relative;z-
-
 
+
index:100;font:normal 12px/30px arial, sans-serif;color:#fff;border-radius:10px 10px 0 0;}
index:100;font:normal 12px/30px arial, sans-serif;color:#fff;border-radius:10px 10px 0 0;}
-
ul.menu label.open b {color:#ff0;}
+
ul.menu span {display:block;background:#517b1f;line-height:30px;position:relative;z-index:100;font-size: 16px;padding-left:10px;}
-
ul.menu span {display:block;background:#c00;line-height:30px;position:relative;z-index:100;font-size: 16px;padding-left:10px;}
+
ul.menu label img {position:absolute;left:0;top:0;width:100%;height:30px;}
ul.menu label img {position:absolute;left:0;top:0;width:100%;height:30px;}
ul.menu ul li {margin-top:-30px;
ul.menu ul li {margin-top:-30px;
Line 58: Line 56:
transition: 0.5s;
transition: 0.5s;
}
}
-
ul.menu ul li a {display:block;font:normal 16px/29px arial, sans-serif;color:#000;background:#ccc;}
+
ul.menu ul li a {display:block;font:normal 16px/29px arial, sans-serif;color:#000;background:#b3e24b;}
-
ul.menu ul li a:hover {background:#ddd;}
+
ul.menu ul li a:hover {background:#d3f18c;}
ul.menu input {position:absolute;left:-9999px;}
ul.menu input {position:absolute;left:-9999px;}
ul.menu li input:checked + label {background:#069;}
ul.menu li input:checked + label {background:#069;}
-
ul.menu li input:checked ~ ul {background:#ccc;padding-bottom:10px;}
+
ul.menu li input:checked ~ ul {background:#b3e24b;padding-bottom:10px;}
ul.menu li input:checked ~ ul li {margin-top:0;}
ul.menu li input:checked ~ ul li {margin-top:0;}
ul.menu label.close {display:block;width:200px;height:30px;background:transparent url("/jscss/demoimg/201208/u-arrow.gif")  
ul.menu label.close {display:block;width:200px;height:30px;background:transparent url("/jscss/demoimg/201208/u-arrow.gif")  
Line 94: Line 92:
         <li><a href="https://2013.igem.org/Team:HZAU-China/Modeling"><span>Overview</span></a></li>
         <li><a href="https://2013.igem.org/Team:HZAU-China/Modeling"><span>Overview</span></a></li>
         <li><a href="https://2013.igem.org/Team:HZAU-China/Modeling/Gray logistic"><span>Gray logistic</span></a></li>  
         <li><a href="https://2013.igem.org/Team:HZAU-China/Modeling/Gray logistic"><span>Gray logistic</span></a></li>  
-
         <li><a href="https://2013.igem.org/Team:HZAU-China/Modeling/Immune responce"><span style="font-size:19px;color=#fff;">Immune responce</span></a></li>
+
         <li><a href="https://2013.igem.org/Team:HZAU-China/Modeling/Immune response"><span style="font-size:19px;color=#fff;">Immune response</span></a></li>
-
         <li><a href="https://2013.igem.org/Team:HZAU-China/Modeling/Cellular automata"><span>Cellular automata</span></a></li>
+
         <li><a href="https://2013.igem.org/Team:HZAU-China/Modeling/Cellular automata"><span>Cellular automaton</span></a></li>
          
          
       </body>
       </body>
Line 101: Line 99:
     <div id="paragraphs">
     <div id="paragraphs">
     <p><br></p>
     <p><br></p>
-
     <center><span style="font-size:46px;font-family:Cambria;margin-top:10px;line-height:80%">Immune responce</span></center>
+
     <center><span style="font-size:46px;font-family:Cambria;margin-top:10px;line-height:80%">Immune response</span></center>
     <p><br></p>
     <p><br></p>
-
<h3>Aim: </h3>
+
<h3><b>Aim: </b></h3>
<p style="font-size:16px;font-family:arial, sans-serif;">To know how much glycoprotein could cause the immune response to generate adequate levels of antibody.</p>
<p style="font-size:16px;font-family:arial, sans-serif;">To know how much glycoprotein could cause the immune response to generate adequate levels of antibody.</p>
Line 112: Line 110:
<p style="font-size:16px;font-family:arial, sans-serif;">3. Simulate and analyze the results.</p>
<p style="font-size:16px;font-family:arial, sans-serif;">3. Simulate and analyze the results.</p>
-
<h3>Background:</h3>
+
<h3><b>Background:</b></h3>
<p style="font-size:16px;font-family:arial, sans-serif;">In mammals, when foreign materials are detected in the body, B cells transform into B lymphocytes that could secrete antibodies. B cells could also proliferate itself and antibodies are produced by the stimulation of specific antigens.</p>
<p style="font-size:16px;font-family:arial, sans-serif;">In mammals, when foreign materials are detected in the body, B cells transform into B lymphocytes that could secrete antibodies. B cells could also proliferate itself and antibodies are produced by the stimulation of specific antigens.</p>
-
<p style="font-size:16px;font-family:arial, sans-serif;">Most of the antigens cannot proliferate, so they will be cleaned by the immune system quickly. But here our glycoprotein is proliferative, and it is possible for it to ultimately reach a steady value.</p>
+
<p style="font-size:16px;font-family:arial, sans-serif;">Most of the antigens cannot proliferate, so they will be cleaned by the immune system quickly. But here our glycoprotein is proliferative, and it is possible for it to ultimately reach a steady level.</p>
-
<p style="font-size:16px;font-family:arial, sans-serif;">Suppose <i>N</i> is the concentration of the antigen (glycoprotein) and <i>A</i> is the concentration of the antibody. Assume that the rate of B lymphocyte secreting antibody is <i>f(N)</i>.If the amount of antigen is small, <i>f(N)</i> is approximate to βN where is a parameter. Suppose that the growth rate of the antigen is αN and the mortality rate of the antigen is subject to mass interaction law with antiboby, then, the change rate of antigen with time can be expressed as:</p>
+
<p style="font-size:16px;font-family:arial, sans-serif;">Suppose <i>N</i> is the concentration of the antigen (glycoprotein) and <i>A</i> is the concentration of the antibody. Assume that the rate of B lymphocyte secreting antibody is <i>f(N)</i>.If the amount of antigen is small, <i>f(N)</i> is approximate to βN where β is a parameter. Suppose that the growth rate of the antigen is αN and the mortality rate of the antigen is subject to mass interaction law with antiboby, then, the change rate of antigen with time can be expressed as:</p>
-
<p style="font-size:16px;font-family:arial, sans-serif;text-align:center;"><i>N=αN-κAN &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;(1)</i></p>
+
<p style="font-size:16px;font-family:arial, sans-serif;text-align:center;"><i>N=αN-κAN, &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;</i>(1)</p>
<p style="font-size:16px;font-family:arial, sans-serif;">where κ is parameter. </p>
<p style="font-size:16px;font-family:arial, sans-serif;">where κ is parameter. </p>
-
<p style="font-size:16px;font-family:arial, sans-serif;">Suppose the mortality rate of the antibody is subject to mass interaction law with antigen and the self degradation rate of antibody is , then, the change rate of antibody with time is expressed as:</p>
+
<p style="font-size:16px;font-family:arial, sans-serif;">Suppose the mortality rate of the antibody is subject to mass interaction law with antigen and the self degradation rate of antibody is <i>μA</i>, then, the change rate of antibody with time is expressed as:</p>
-
<p style="font-size:16px;font-family:arial, sans-serif;text-align:center;"><i>A=-κAN+βN-μA &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;(2)</i></p>
+
<p style="font-size:16px;font-family:arial, sans-serif;text-align:center;"><i>A= - κAN+βN-μA. &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;</i>(2)</p>
<p style="font-size:16px;font-family:arial, sans-serif;">The values of the parameters are determined by experiments using data fitting and listed in the following table.</p>
<p style="font-size:16px;font-family:arial, sans-serif;">The values of the parameters are determined by experiments using data fitting and listed in the following table.</p>
-
<p  style="text-align:center;"><a><img width="650" src="https://static.igem.org/mediawiki/2013/4/42/Hongping9_26.png" ></a></br></p>
 
-
<p style="font-size:16px;font-family:arial, sans-serif;">We used matlab to solve differential equations. The concentration of antibody and antigen changes over time and the figure is as follows.</p>
+
<p  style="text-align:center;"><a><img width="650" src="https://static.igem.org/mediawiki/2013/4/45/Hongpingtup.png" ></a></br></p>
 +
 
 +
<p style="font-size:16px;font-family:arial, sans-serif;">We used MATLAB to solve differential equations. The concentrations of antibody and antigen change over time and the figure is as follows.</p>
<p  style="text-align:center;"><a><img width="500" src="https://static.igem.org/mediawiki/2013/3/3c/The-antibody-consentration.png" ></a></br></p>
<p  style="text-align:center;"><a><img width="500" src="https://static.igem.org/mediawiki/2013/3/3c/The-antibody-consentration.png" ></a></br></p>
-
<p style="font-size:16px;font-family:arial, sans-serif;">Also we drew the relationship diagrams between antibody and antigen</p>
+
<p style="font-size:16px;font-family:arial, sans-serif;">Also we drew the relationship diagram between antibody and antigen</p>
<p  style="text-align:center;"><a><img width="500" src="https://static.igem.org/mediawiki/2013/8/8c/12321423544235.png" ></a></br></p>
<p  style="text-align:center;"><a><img width="500" src="https://static.igem.org/mediawiki/2013/8/8c/12321423544235.png" ></a></br></p>
-
<p style="font-size:16px;font-family:arial, sans-serif;">From the figures we could know that the amount of antigen is gradually reduce and the amount of antibody is gradually increase with the extension of time. Also we may find out the relationship between antibody and antigen. The amount of antibody would eventually reach a stable value. If the amount of antibody is not meet our requirements, the dog could be immune for many times.</p>  
+
<p style="font-size:16px;font-family:arial, sans-serif;">From the figures we could know that the amount of antigen gradually decreases and the amount of antibody gradually increases with the extension of time. Also we may find out the relationship between antibody and antigen. The amount of antibody would eventually reach a stable value. If the amount of antibody does not meet our requirements, the dogs could be immunized for many times.</p>  
-
<h3>Reference</h3>
+
<h3><b>Reference: </b></h3>
-
<p style="font-size:16px;font-family:arial, sans-serif;">1Liu Qing. The analysis of the relationship between antibody and antigen in immune response[J]. Journal of Ningxia University:17(4):64-66</p>
+
<p style="font-size:16px;font-family:arial, sans-serif;">1.Liu Qing. The analysis of the relationship between antibody and antigen in immune response[J]. Journal of Ningxia University:17(4):64-66 (In Chinese)</p>
-
<p style="font-size:16px;font-family:arial, sans-serif;">2Yumin Xia, A.J. The constant region affects antigen binding of antibodies to DNA by altering secondary structure[J]. Molecular Immunology,2013, (11) : 28–37</p>
+
<p style="font-size:16px;font-family:arial, sans-serif;">2.Yumin Xia, A.J. The constant region affects antigen binding of antibodies to DNA by altering secondary structure[J]. Molecular Immunology,2013, (11) : 28–37</p>
-
<p style="font-size:16px;font-family:arial, sans-serif;">3Jane M., et al., An empirical modeling platform to evaluate the relative control discrete CHO cell synthetic processes exert over recombinant monoclonal antibody production process titer. Biotechnology and Bioengineering, 2011. 108(9), 2193 - 2204</p>
+
<p style="font-size:16px;font-family:arial, sans-serif;">3.Jane M., et al., An empirical modeling platform to evaluate the relative control discrete CHO cell synthetic processes exert over recombinant monoclonal antibody production process titer. Biotechnology and Bioengineering, 2011. 108(9), 2193 - 2204</p>
    
    
     </div>
     </div>

Latest revision as of 03:53, 28 September 2013


Immune response


Aim:

To know how much glycoprotein could cause the immune response to generate adequate levels of antibody.

Steps:

1. Build the model;

2. Determine the parameters;

3. Simulate and analyze the results.

Background:

In mammals, when foreign materials are detected in the body, B cells transform into B lymphocytes that could secrete antibodies. B cells could also proliferate itself and antibodies are produced by the stimulation of specific antigens.

Most of the antigens cannot proliferate, so they will be cleaned by the immune system quickly. But here our glycoprotein is proliferative, and it is possible for it to ultimately reach a steady level.

Suppose N is the concentration of the antigen (glycoprotein) and A is the concentration of the antibody. Assume that the rate of B lymphocyte secreting antibody is f(N).If the amount of antigen is small, f(N) is approximate to βN where β is a parameter. Suppose that the growth rate of the antigen is αN and the mortality rate of the antigen is subject to mass interaction law with antiboby, then, the change rate of antigen with time can be expressed as:

N=αN-κAN,          (1)

where κ is parameter.

Suppose the mortality rate of the antibody is subject to mass interaction law with antigen and the self degradation rate of antibody is μA, then, the change rate of antibody with time is expressed as:

A= - κAN+βN-μA.          (2)

The values of the parameters are determined by experiments using data fitting and listed in the following table.


We used MATLAB to solve differential equations. The concentrations of antibody and antigen change over time and the figure is as follows.


Also we drew the relationship diagram between antibody and antigen


From the figures we could know that the amount of antigen gradually decreases and the amount of antibody gradually increases with the extension of time. Also we may find out the relationship between antibody and antigen. The amount of antibody would eventually reach a stable value. If the amount of antibody does not meet our requirements, the dogs could be immunized for many times.

Reference:

1.Liu Qing. The analysis of the relationship between antibody and antigen in immune response[J]. Journal of Ningxia University:17(4):64-66 (In Chinese)

2.Yumin Xia, A.J. The constant region affects antigen binding of antibodies to DNA by altering secondary structure[J]. Molecular Immunology,2013, (11) : 28–37

3.Jane M., et al., An empirical modeling platform to evaluate the relative control discrete CHO cell synthetic processes exert over recombinant monoclonal antibody production process titer. Biotechnology and Bioengineering, 2011. 108(9), 2193 - 2204