Team:Freiburg/Project/toolkit

From 2013.igem.org

(Difference between revisions)
 
(55 intermediate revisions not shown)
Line 154: Line 154:
visibility:visible;
visibility:visible;
width=1000px;
width=1000px;
 +
color:black;
}
}
#answer_third_checkboxes {
#answer_third_checkboxes {
-
margin-top: -100px;
+
color:black; !important;
 +
font-color:black; !important;
}
}
#main_contant {
#main_contant {
-
color: black:
+
margin-top:-100px;
 +
color: black; !important;
 +
font-color:black; !important;
}
}
 +
#final_checkbox_content form{
 +
visibility:hidden;
 +
}
 +
 +
html {color: #black !important;}
}
}
Line 614: Line 623:
</p>
</p>
-
<p class="first_order"><a href="https://2013.igem.org/Team:Freiburg/Project/1"> Introduction </a></p>
+
<p class="first_order"><a href="https://2013.igem.org/Team:Freiburg/Project/1"> Abstract & Intro </a></p>
 +
<p class="first_order"><a href="https://2013.igem.org/Team:Freiburg/Project/crrna"> Targeting </a></p>
<p class="first_order"><a href="https://2013.igem.org/Team:Freiburg/Project/effector"> Effectors </a></p>
<p class="first_order"><a href="https://2013.igem.org/Team:Freiburg/Project/effector"> Effectors </a></p>
<p class="first_order"><a href="https://2013.igem.org/Team:Freiburg/Project/induction"> Effector Control </a> </p>
<p class="first_order"><a href="https://2013.igem.org/Team:Freiburg/Project/induction"> Effector Control </a> </p>
-
<p class="first_order"><a href="https://2013.igem.org/Team:Freiburg/Project/crrna"> Targeting </a></p>
+
<p class="first_order"><a href="https://2013.igem.org/Team:Freiburg/Project/modeling"> Modeling </a></p>
 +
<p class="first_order"><a href="https://2013.igem.org/Team:Freiburg/Project/truncation"> Truncation </a></p>
<p class="first_order"><a href="https://2013.igem.org/Team:Freiburg/Project/method"> uniBAss </a></p>
<p class="first_order"><a href="https://2013.igem.org/Team:Freiburg/Project/method"> uniBAss </a></p>
 +
<p class="first_order"><a href="https://2013.igem.org/Team:Freiburg/Project/unibox"> uniBOX </a></p>
<p class="first_order"><a href="https://2013.igem.org/Team:Freiburg/Project/toolkit" class="active"> Manual </a></p>
<p class="first_order"><a href="https://2013.igem.org/Team:Freiburg/Project/toolkit" class="active"> Manual </a></p>
-
<p class="first_order"><a href="https://2013.igem.org/Team:Freiburg/Project/modeling"> Modeling </a></p>
+
<p class="first_order"><a href="https://2013.igem.org/Team:Freiburg/Project/application" > Application </a></p>
</div>
</div>
Line 635: Line 647:
<div id="headline">
<div id="headline">
-
The uniCAS toolkit - Customize your experiments!
+
The uniCAS toolkit - Customize your experiments!<br><br>
</div>
</div>
Line 648: Line 660:
</ul>
</ul>
-
By the end of the routine you will get a personal manual. All you need to use the uniCAS toolkit  
+
By the end of the routine you will get a personal manual. All you need to do is using the uniCAS toolkit and follow the instructions. Best of all: The uniCAS toolkit is all open source and in iGEM standard!
 +
<br>
-
will be described there. Best of all: The uniCAS toolkit is all open source!
+
<!--
 +
<p><b>Finally ... does everybody know what time it is? It's tooltime!</b></p>
 +
Also have a look at Sigma Aldrich to order your oligos coding for the crRNAs: <br>
 +
<br>
 +
<a href="http://www.sigmaaldrich.com/germany.html"> <img src="https://static.igem.org/mediawiki/2013/0/01/SA_Logo_freiburg.jpg" width="300px"> </a>
 +
-->
</div>
</div>
Line 665: Line 683:
<div id="check-1" class="toHide" style="display:none">
<div id="check-1" class="toHide" style="display:none">
<img src="https://static.igem.org/mediawiki/2013/6/6e/Activation.png">
<img src="https://static.igem.org/mediawiki/2013/6/6e/Activation.png">
-
<p> Choose an effector to activate your genes. Click <a id="link" href="https://2013.igem.org/Team:Freiburg/Project/effector#activation"> here </a> to see the functional tests of the different activation effectors. </p>
+
<p> Choose an effector to activate your genes. Click <a id="link" href="https://2013.igem.org/Team:Freiburg/Project/effector#activation"> here</a> to see the functional tests of the different activation effectors. </p>
<label><input id="rdb4" type="radio" name="toggler_two" value="3" onClick="pageScroll()"/>VP16 (recommended) </label>
<label><input id="rdb4" type="radio" name="toggler_two" value="3" onClick="pageScroll()"/>VP16 (recommended) </label>
<!-- <label><input id="rdb5" type="radio" name="toggler_two" value="4" onClick="pageScroll()"/> ?????? </label> -->
<!-- <label><input id="rdb5" type="radio" name="toggler_two" value="4" onClick="pageScroll()"/> ?????? </label> -->
Line 672: Line 690:
<div id="check-2" class="toHide" style="display:none">
<div id="check-2" class="toHide" style="display:none">
<img src="https://static.igem.org/mediawiki/2013/d/da/Repression.png">
<img src="https://static.igem.org/mediawiki/2013/d/da/Repression.png">
-
<p> Effectively repress your genes using KRAB or G9a as functional effector. <br> Click <a id="link" href="https://2013.igem.org/Team:Freiburg/Project/effector#repression"> here </a> to see the functional tests of the different activation effectors. </p>
+
<p> Effectively repress your genes using KRAB or G9a as functional effector. <br> Click <a id="link" href="https://2013.igem.org/Team:Freiburg/Project/effector#repression"> here</a> to see the functional tests of the different activation effectors. </p>
<div>
<div>
<label><input id="rdb4" type="radio" name="toggler_two" value="5" onClick="pageScroll()"/>KRAB </label>
<label><input id="rdb4" type="radio" name="toggler_two" value="5" onClick="pageScroll()"/>KRAB </label>
-
<label><input id="rdb5" type="radio" name="toggler_two" value="6" onClick="pageScroll()"/> G9A </label>
+
<label><input id="rdb5" type="radio" name="toggler_two" value="6" onClick="pageScroll()"/> G9a </label>
</div>
</div>
</div>
</div>
Line 729: Line 747:
</div>
</div>
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
<div id="answer_third_checkboxes">
<div id="answer_third_checkboxes">
Line 739: Line 768:
<p id="h1">
<p id="h1">
-
Non inducible uniCAS Activator (Cas9-VP16 device)
+
Non inducible uniCAS Activator (dCas9-VP16 device)
</p>
</p>
<p>
<p>
-
You have chosen to activate a gene using a non inducible Cas9-VP16 device. Therefore you have to order the following plasmids from the <a id="link" href="http://parts.igem.org/Main_Page"> iGEM parts registry </a>. After receiving our plasmids, you will have to clone your target sequence into our crRNA plasmid (protocol see below).
+
You have chosen to activate a gene using a non inducible dCas9-VP16 device. Therefore you have to order the following plasmids from the <a id="link" href="http://parts.igem.org/Main_Page"> iGEM parts registry</a>. After receiving our plasmids, you will have to clone your target sequence into our crRNA plasmid (protocol see below).
</p>
</p>
Line 752: Line 781:
<th> Device </th>
<th> Device </th>
<th> Order </th>
<th> Order </th>
-
<th> GeneBank File </th>
+
<!--<th> GeneBank File </th>-->
</tr>
</tr>
<tr>
<tr>
<td> 1 </td>
<td> 1 </td>
<td> BBa_K1150017 </td>
<td> BBa_K1150017 </td>
-
<td> CMV-HA-NLS-Cas9-NLS-BGH </td>
+
<td> CMV:HA-NLS-dCas9-NLS:BGH </td>
<td> <a id="link" href="http://parts.igem.org/partsdb/get_part.cgi?part=BBa_K1150017"> order </a> </td>
<td> <a id="link" href="http://parts.igem.org/partsdb/get_part.cgi?part=BBa_K1150017"> order </a> </td>
-
<td> <a id="link" href=""> genebank </a> </td>
+
<!--<td> <a id="link" href=""> genebank </a> </td>-->
</tr>
</tr>
<tr>
<tr>
<td> 2 </td>
<td> 2 </td>
<td> BBa_K1150020 </td>
<td> BBa_K1150020 </td>
-
<td> CMV-HA-NLS-Cas9-L3-VP16-NLS-BGH </td>
+
<td> CMV:HA-NLS-dCas9-L3-VP16-NLS:BGH </td>
<td> <a id="link" href="http://parts.igem.org/partsdb/get_part.cgi?part=BBa_K1150020"> order </a> </td>
<td> <a id="link" href="http://parts.igem.org/partsdb/get_part.cgi?part=BBa_K1150020"> order </a> </td>
-
<td> <a id="link" href=""> genebank </a> </td>
+
<!--<td> <a id="link" href=""> genebank </a> </td>-->
</tr>
</tr>
<tr>
<tr>
<td> 3 </td>
<td> 3 </td>
<td> BBa_K1150034 </td>
<td> BBa_K1150034 </td>
-
<td> crRNA - plasmid </td>
+
<td> RNAimer - plasmid (crRNA - plasmid) </td>
<td> <a id="link" href="http://parts.igem.org/partsdb/get_part.cgi?part=BBa_K1150034"> order </a> </td>
<td> <a id="link" href="http://parts.igem.org/partsdb/get_part.cgi?part=BBa_K1150034"> order </a> </td>
-
<td> <a id="link" href=""> genebank </a> </td>
+
<!--<td> <a id="link" href=""> genebank </a> </td>-->
</tr>
</tr>
Line 782: Line 811:
<p>
<p>
Note: <br>
Note: <br>
-
All plasmids are optimized for expression in mammalian systems. The devices are also available containing an SV40 instead of an CMV promotor (have a look at our <a id="link" href="https://2013.igem.org/Team:Freiburg/parts"> parts </a> side). This system was tested mainly in CHO-K1, HEK-293T and HeLa cells.  
+
All plasmids are optimized for expression in mammalian systems. The devices are also available containing a SV40 instead of a CMV promotor (have a look at our <a id="link" href="https://2013.igem.org/Team:Freiburg/parts"> parts</a> side). This system was tested mainly in CHO-K1 and HEK-293T.  
</p>
</p>
Line 804: Line 833:
<ol>
<ol>
-
<li> <b>Oligo annealing:</b> Anneal forward and reverse oligo to get the desired crRNA. Therefore mix 10 µl of 100 µM forward Oligo, 10 µl of 100 µM reverse Oligo and 80 µl of ddH2O. Heat the solution to 95° C for 5 minutes. Then turn off the heat block and let the solution cool down.</li>
+
<li> <b>Oligo annealing:</b> Anneal forward and reverse oligos to get the desired crRNA. Therefore mix 10 µl of 100 µM forward Oligo, 10 µl of 100 µM reverse Oligo and 80 µl of ddH<sub>2</sub>O. Heat the solution to 95° C for 5 minutes. Then turn off the heat block and let the solution cool down.</li>
-
<li> <b>Digest plasmid BBa_K1150034 with Bbs1:</b> The restriction enzyme Bbs1 should always be stored at -80° C. Mix about 500 ng of BBa_K1150034 with 1 µl of Bbs1, appropriate amount of buffer and fill up to 50 µl with ddH2O. Digest for exact 3 hours at 37° C. Put digest on a gel and cut the DNA band (2900 bp) out. Purify the gel slice and use DNA for the next step.</li>
+
<li> <b>Digest plasmid BBa_K1150034 with Bbs1:</b> The restriction enzyme Bbs1 should always be stored at -80° C. Mix about 500 ng of BBa_K1150034 with 1 µl of Bbs1, appropriate amount of buffer and fill up to 50 µl with ddH<sub>2</sub>O. Digest for exactly 3 hours at 37° C. Load the digest on a gel and cut out the DNA band (2900 bp). Purify the gel slice and use DNA for the next step.</li>
-
<li> <b>Ligate crRNAs (step 1) into Bbs1 cut backbone:</b> The insert (crRNAs) should be ligated into the backbone in 3 molar insert excess. Therefore use this formular: Required Volume of Insert = 3 x Volume(Backbone) x length(Insert) x concentration (Backbone) / [ length(Backbone)  x concentration(Insert) ]. Use about 50 ng Bacbbone. The length of insert is always 30 basepairs. The length of the backbone is 2900 basepairs. You have to mix the appropriate amount of Backbone and the appropriate amount of Insert with 1 µl of T4 Ligase and 2 µl of 10xT4 ligase buffer. Then fill up to 20 µl with ddH2O. This mix should incubate for 30 minutes at room temperature.</li>
+
<li> <b>Ligate crRNAs (step 1) into Bbs1 cut backbone:</b> The insert (crRNAs) should be ligated into the backbone in 3 molar insert excess. Therefore use this formular: Required Volume of Insert = 3 x Volume(Backbone) x length(Insert) x concentration (Backbone) / [ length(Backbone)  x concentration(Insert) ]. Use about 50 ng of backbone. The length of insert is always 30 basepairs. The length of the backbone is 2900 basepairs. You have to mix the appropriate amount of Backbone and the appropriate amount of Insert with 1 µl of T4 ligase and 2 µl of 10xT4 ligase buffer. Then fill up to 20 µl with ddH<sub>2</sub>O. This mix should be incubated for 30 minutes at room temperature.</li>
-
<li> <b>Transform</b> 3-5 µl of the mix following standard protocol. Pick clones, miniprep the plasmids and sequence it with pSB1C3 reverse sequencing primer (sequence: CGCCTTTGAGTGAGCTGATACCGC).</li>
+
<li> <b>Transform</b> 3-5 µl of the mix following <a id="link" href="https://2013.igem.org/Team:Freiburg/protocols#Transformation">standard protocol</a>. Pick clones, miniprep the plasmids and sequence it with pSB1C3 reverse sequencing primer (sequence: CGCCTTTGAGTGAGCTGATACCGC).</li>
</ol>
</ol>
Line 824: Line 853:
<ol>
<ol>
-
<li> <b>Digest first crRNA plasmid</b> with XXX and XXX in order to linearize it. Both enzymes cut in the suffix. Using the <a id="link" href="http://parts.igem.org/Help:Assembly/3A_Assembly">BioBrick Assembly method</a>, it is possible to assemble multiple crRNA sequences in one plasmid. Therefore mix about 500 ng Backbone with 1 µl Enzyme 1 and 1 µl Enzyme 2, add an appropriate amount of compatible buffer and fill up to approximate 30-50 µl. Incubate mix at 37° C for 2 hours. </li>
+
<li> <b>First of all digest crRNA plasmid</b> with PstI and SpeI in order to linearize it. Both enzymes cut in the suffix. Using the <a id="link" href="http://parts.igem.org/Help:Assembly/3A_Assembly">BioBrick Assembly method</a>, it is possible to assemble multiple crRNA sequences into one plasmid. Therefore mix about 500 ng Backbone with 1 µl enzyme 1 and 1 µl enzyme 2, add an appropriate amount of compatible buffer and fill up to 30-50 µl. Incubate mix at 37° C for 2 hours. </li>
-
<li> <b>Digest second crRNA plasmid</b> with XXX and XXX. Using the <a id="link" href="http://parts.igem.org/Help:Assembly/3A_Assembly">BioBrick Assembly method</a>, this is your insert (procedure see above).</li>
+
<li> <b>Secondly digest crRNA plasmid</b> with PstI and XbaI. Using the <a id="link" href="http://parts.igem.org/Help:Assembly/3A_Assembly">BioBrick Assembly method</a>, this is your insert (procedure see above).</li>
-
<li>  Put digests on a gel and cut the DNA bands out (Backbone 2900 bp, Insert 870 bp). Purify the gel slice and use DNA for the next step.</li>
+
<li>  Load digests on a gel and cut out the DNA bands (Backbone 2900 bp, Insert 870 bp). Purify the gel slice and use DNA for the next step.</li>
<li> <b>Ligate</b> the insert in 3 molar excess into the backbone (formular see paragraph above).</li>
<li> <b>Ligate</b> the insert in 3 molar excess into the backbone (formular see paragraph above).</li>
-
<li> <b>Transform</b> 3-5 µl of the mix following standard protocol. Pick clones, miniprep the plasmids and sequence it with pSB1C3 forward sequencing primer (sequence: GAGTGCCACCTGACGTCTAAGAAAC) and pSB1C3 reverse sequencing primer (sequence: CGCCTTTGAGTGAGCTGATACCGC).</li>
+
<li> <b>Transform</b> 3-5 µl of the mix following <a id="link" href="https://2013.igem.org/Team:Freiburg/protocols#Transformation">standard protocol</a>. Pick clones, miniprep the plasmids and sequence it with pSB1C3 forward sequencing primer (sequence: GAGTGCCACCTGACGTCTAAGAAAC) and pSB1C3 reverse sequencing primer (sequence: CGCCTTTGAGTGAGCTGATACCGC).</li>
<li> These steps can be repeated various times. Using this method, you can engineer a plasmid with several crRNA targets!</li>
<li> These steps can be repeated various times. Using this method, you can engineer a plasmid with several crRNA targets!</li>
</ol>
</ol>
Line 838: Line 867:
<ol>
<ol>
<li> <b>Transfect</b> BBa_K1150020 with all desired crRNA plasmids (seperate crRNA plasmid and/or multiple crRNAs plasmid) </li>
<li> <b>Transfect</b> BBa_K1150020 with all desired crRNA plasmids (seperate crRNA plasmid and/or multiple crRNAs plasmid) </li>
-
<li> <b>Non-effector control:</b> Transfect the appropriate crRNA - plasmid togehter with BBa_K1150017 that has no effector.</li>
+
<li> <b>Non-effector control:</b> Transfect the appropriate crRNA - plasmid together with BBa_K1150017 that has no effector.</li>
<li> <b>Off target control:</b> Transfect BBa_K1150020 without any crRNA plasmid.</li>
<li> <b>Off target control:</b> Transfect BBa_K1150020 without any crRNA plasmid.</li>
</ol>
</ol>
-
<input name="b_print" type="button" class="ipt"  onClick="printdiv('check-7');" value=" Print ">
 
 +
<a href="https://static.igem.org/mediawiki/2013/7/7c/1_manual_pdf_freiburg.pdf"> <img src="https://static.igem.org/mediawiki/2013/9/9d/Printknopf_freiburg_13.png" width="100px" border="0"  style="margin-left:350px; margin-top: 50px;" alt=""> </a>
</div>
</div>
Line 852: Line 881:
</div>
</div>
 +
 +
 +
 +
 +
 +
Line 866: Line 901:
<p id="h1">
<p id="h1">
-
Red light inducible uniCAS Activator (Cas9-PIF6 & PhyB-VP16 devices)
+
Red light inducible uniCAS Activator (dCas9-PIF6 & PhyB-VP16 devices)
</p>
</p>
<p>
<p>
-
You have chosen to activate a gene using a red light inducible Cas9-PIF6 & PhyB-VP16 device. Therefore you have to order the following plasmids from the <a id="link" href="http://parts.igem.org/Main_Page"> iGEM parts registry</a>. After receiving our plasmids, you will have to clone your target sequence into our crRNA plasmid (protocol see below).
+
You have chosen to activate a gene using a red light inducible dCas9-PIF6 & PhyB-VP16 device. Therefore you have to order the following plasmids from the <a id="link" href="http://parts.igem.org/Main_Page"> iGEM parts registry</a>. After receiving our plasmids, you will have to clone your target sequence into our crRNA plasmid (protocol see below).
</p>
</p>
Line 879: Line 914:
<th> Device </th>
<th> Device </th>
<th> Order </th>
<th> Order </th>
-
<th> GeneBank File </th>
+
<!--<th> GeneBank File </th>-->
</tr>
</tr>
<tr>
<tr>
<td> 1 </td>
<td> 1 </td>
<td> BBa_K1150025 </td>
<td> BBa_K1150025 </td>
-
<td> CMV-HA-NLS-Cas9-L3-PIF6-NLS-BGH </td>
+
<td> CMV:HA-NLS-dCas9-L3-PIF6-NLS:BGH </td>
<td> <a id="link" href="http://parts.igem.org/partsdb/get_part.cgi?part=BBa_K1150025"> order </a> </td>
<td> <a id="link" href="http://parts.igem.org/partsdb/get_part.cgi?part=BBa_K1150025"> order </a> </td>
-
<td> <a id="link" href=""> genebank </a> </td>
+
<!--<td> <a id="link" href=""> genebank </a> </td>-->
</tr>
</tr>
<tr>
<tr>
<td> 2 </td>
<td> 2 </td>
<td> BBa_K1150026 </td>
<td> BBa_K1150026 </td>
-
<td> CMV-NLS-PhyB-L3-VP16-NLS-BGH </td>
+
<td> CMV:NLS-PhyB-L3-VP16-NLS:BGH </td>
<td> <a id="link" href="http://parts.igem.org/partsdb/get_part.cgi?part=BBa_K1150026"> order </a> </td>
<td> <a id="link" href="http://parts.igem.org/partsdb/get_part.cgi?part=BBa_K1150026"> order </a> </td>
-
<td> <a id="link" href=""> genebank </a> </td>
+
<!--<td> <a id="link" href=""> genebank </a> </td>-->
</tr>
</tr>
<tr>
<tr>
<td> 3 </td>
<td> 3 </td>
<td> BBa_K1150020 </td>
<td> BBa_K1150020 </td>
-
<td> CMV-HA-NLS-Cas9-L3-VP16-NLS-BGH </td>
+
<td> CMV:HA-NLS-dCas9-L3-VP16-NLS:BGH </td>
<td> <a id="link" href="http://parts.igem.org/partsdb/get_part.cgi?part=BBa_K1150020"> order </a> </td>
<td> <a id="link" href="http://parts.igem.org/partsdb/get_part.cgi?part=BBa_K1150020"> order </a> </td>
-
<td> <a id="link" href=""> genebank </a> </td>
+
<!--<td> <a id="link" href=""> genebank </a> </td>-->
</tr>
</tr>
<tr>
<tr>
<td> 4 </td>
<td> 4 </td>
<td> BBa_K1150034 </td>
<td> BBa_K1150034 </td>
-
<td> crRNA - plasmid </td>
+
<td> RNAimer - plasmid (crRNA - plasmid)</td>
<td> <a id="link" href="http://parts.igem.org/partsdb/get_part.cgi?part=BBa_K1150034"> order </a> </td>
<td> <a id="link" href="http://parts.igem.org/partsdb/get_part.cgi?part=BBa_K1150034"> order </a> </td>
-
<td> <a id="link" href=""> genebank </a> </td>
+
<!--<td> <a id="link" href=""> genebank </a> </td>-->
</tr>
</tr>
Line 917: Line 952:
<p>
<p>
Note: <br>
Note: <br>
-
All plasmids are optimized for expression in mammalian systems. The devices are also available containing an SV40 instead of an CMV promotor (have a look at our <a id="link" href="https://2013.igem.org/Team:Freiburg/parts"> parts </a> side). This system was tested mainly in CHO-K1, HEK-293T and HeLa cells.  
+
All plasmids are optimized for expression in mammalian systems. The devices are also available containing a SV40 instead of a CMV promotor (have a look at our <a id="link" href="https://2013.igem.org/Team:Freiburg/parts"> parts</a> side). This system was tested mainly in CHO-K1 and HEK-293T cells.  
</p>
</p>
Line 940: Line 975:
<ol>
<ol>
-
<li> <b>Oligo annealing:</b> Anneal forward and reverse oligo to get the desired crRNA. Therefore mix 10 µl of 100 µM forward Oligo, 10 µl of 100 µM reverse Oligo and 80 µl of ddH2O. Heat the solution to 95° C for 5 minutes. Then turn off the heat block and let the solution cool down.</li>
+
<li> <b>Oligo annealing:</b> Anneal forward and reverse oligos to get the desired crRNA. Therefore mix 10 µl of 100 µM forward Oligo, 10 µl of 100 µM reverse Oligo and 80 µl of ddH2O. Heat the solution to 95° C for 5 minutes. Then turn off the heat block and let the solution cool down.</li>
-
<li> <b>Digest plasmid BBa_K1150034 with Bbs1:</b> The restriction enzyme Bbs1 should always be stored at -80° C. Mix about 500 ng of BBa_K1150034 with 1 µl of Bbs1, appropriate amount of buffer and fill up to 50 µl with ddH2O. Digest for exact 3 hours at 37° C. Put digest on a gel and cut the DNA band (2900 bp) out. Purify the gel slice and use DNA for the next step.</li>
+
<li> <b>Digest plasmid BBa_K1150034 with Bbs1:</b> The restriction enzyme Bbs1 should always be stored at -80° C. Mix about 500 ng of BBa_K1150034 with 1 µl of Bbs1, appropriate amount of buffer and fill up to 50 µl with ddH2O. Digest for exactly 3 hours at 37° C. Load the digest on a gel and cut out the DNA band (2900 bp). Purify the gel slice and use DNA for the next step.</li>
-
<li> <b>Ligate crRNAs (step 1) into Bbs1 cut backbone:</b> The insert (crRNAs) should be ligated into the backbone in 3 molar insert excess. Therefore use this formular: Required Volume of Insert = 3 x Volume(Backbone) x length(Insert) x concentration (Backbone) / [ length(Backbone)  x concentration(Insert) ]. Use about 50 ng Bacbbone. The length of insert is always 30 basepairs. The length of the backbone is 2900 basepairs. You have to mix the appropriate amount of Backbone and the appropriate amount of Insert with 1 µl of T4 Ligase and 2 µl of 10xT4 ligase buffer. Then fill up to 20 µl with ddH2O. This mix should incubate for 30 minutes at room temperature.</li>
+
<li> <b>Ligate crRNAs (step 1) into Bbs1 cut backbone:</b> The insert (crRNAs) should be ligated into the backbone in 3 molar insert excess. Therefore use this formular: Required Volume of Insert = 3 x Volume(Backbone) x length(Insert) x concentration (Backbone) / [ length(Backbone)  x concentration(Insert) ]. Use about 50 ng of backbone. The length of insert is always 30 basepairs. The length of the backbone is 2900 basepairs. You have to mix the appropriate amount of Backbone and the appropriate amount of Insert with 1 µl of T4 ligase and 2 µl of 10xT4 ligase buffer. Then fill up to 20 µl with ddH2O. This mix should be incubated for 30 minutes at room temperature.</li>
-
<li> <b>Transform</b> 3-5 µl of the mix following standard protocol. Pick clones, miniprep the plasmids and sequence it with pSB1C3 reverse sequencing primer (sequence: CGCCTTTGAGTGAGCTGATACCGC).</li>
+
<li> <b>Transform</b> 3-5 µl of the mix following <a id="link" href="https://2013.igem.org/Team:Freiburg/protocols#Transformation">standard protocol</a>. Pick clones, miniprep the plasmids and sequence it with pSB1C3 reverse sequencing primer (sequence: CGCCTTTGAGTGAGCTGATACCGC).</li>
</ol>
</ol>
Line 960: Line 995:
<ol>
<ol>
-
<li> <b>Digest first crRNA plasmid</b> with XXX and XXX in order to linearize it. Both enzymes cut in the suffix. Using the <a id="link" href="http://parts.igem.org/Help:Assembly/3A_Assembly">BioBrick Assembly method</a>, it is possible to assemble multiple crRNA sequences in one plasmid. Therefore mix about 500 ng Backbone with 1 µl Enzyme 1 and 1 µl Enzyme 2, add an appropriate amount of compatible buffer and fill up to approximate 30-50 µl. Incubate mix at 37° C for 2 hours. </li>
+
<li> <b>First of all digest crRNA plasmid</b> with PstI and SpeI in order to linearize it. Both enzymes cut in the suffix. Using the <a id="link" href="http://parts.igem.org/Help:Assembly/3A_Assembly">BioBrick Assembly method</a>, it is possible to assemble multiple crRNA sequences into one plasmid. Therefore mix about 500 ng Backbone with 1 µl enzyme 1 and 1 µl enzyme 2, add an appropriate amount of compatible buffer and fill up to 30-50 µl. Incubate mix at 37° C for 2 hours. </li>
-
<li> <b>Digest second crRNA plasmid</b> with XXX and XXX. Using the <a id="link" href="http://parts.igem.org/Help:Assembly/3A_Assembly">BioBrick Assembly method</a>, this is your insert (procedure see above).</li>
+
<li> <b>Secondly digest crRNA plasmid</b> with PstI and XbaI. Using the <a id="link" href="http://parts.igem.org/Help:Assembly/3A_Assembly">BioBrick Assembly method</a>, this is your insert (procedure see above).</li>
-
<li>  Put digests on a gel and cut the DNA bands out (Backbone 2900 bp, Insert 870 bp). Purify the gel slice and use DNA for the next step.</li>
+
<li>  Load digests on a gel and cut out the DNA bands (Backbone 2900 bp, Insert 870 bp). Purify the gel slice and use DNA for the next step.</li>
<li> <b>Ligate</b> the insert in 3 molar excess into the backbone (formular see paragraph above).</li>
<li> <b>Ligate</b> the insert in 3 molar excess into the backbone (formular see paragraph above).</li>
-
<li> <b>Transform</b> 3-5 µl of the mix following standard protocol. Pick clones, miniprep the plasmids and sequence it with pSB1C3 forward sequencing primer (sequence: GAGTGCCACCTGACGTCTAAGAAAC) and pSB1C3 reverse sequencing primer (sequence: CGCCTTTGAGTGAGCTGATACCGC).</li>
+
<li> <b>Transform</b> 3-5 µl of the mix following <a id="link" href="https://2013.igem.org/Team:Freiburg/protocols#Transformation">standard protocol</a>. Pick clones, miniprep the plasmids and sequence it with pSB1C3 forward sequencing primer (sequence: GAGTGCCACCTGACGTCTAAGAAAC) and pSB1C3 reverse sequencing primer (sequence: CGCCTTTGAGTGAGCTGATACCGC).</li>
<li> These steps can be repeated various times. Using this method, you can engineer a plasmid with several crRNA targets!</li>
<li> These steps can be repeated various times. Using this method, you can engineer a plasmid with several crRNA targets!</li>
</ol>
</ol>
Line 973: Line 1,008:
<p>
<p>
-
For red light experiments transfect the following plasmid combinations on two different well plates. One plate will be illuminated with 660 nm for 48 hours. This is the red light induced plate. The other plate will be illuminated with 740 nm. This is the no-induction control. Before illuminating you have to put PCB in the wells. See our <a id="link" href="https://2013.igem.org/Team:Freiburg/Project/induction#light">light induction project page</a>.
+
For red light experiments transfect the following plasmid combinations on two different well plates. One plate will be illuminated with 660 nm for 48 hours. This is the red light induced plate. The other plate will be illuminated with 740 nm. This is the no-induction control. If not working in plant systems add 15µM of PCB prior to illumination and incubate for at least 1h. See our <a id="link" href="https://2013.igem.org/Team:Freiburg/Project/induction#light">light induction project page</a>.
</p>
</p>
Line 979: Line 1,014:
<li> <b>Transfect</b> BBa_K1150025, BBa_K1150026 with all desired crRNA plasmids (seperate crRNA plasmid and/or multiple crRNAs plasmid) </li>
<li> <b>Transfect</b> BBa_K1150025, BBa_K1150026 with all desired crRNA plasmids (seperate crRNA plasmid and/or multiple crRNAs plasmid) </li>
<li> <b>Off target control:</b> Transfect BBa_K1150025, BBa_K1150026 without any crRNA plasmid.</li>
<li> <b>Off target control:</b> Transfect BBa_K1150025, BBa_K1150026 without any crRNA plasmid.</li>
-
<li> <b>Target efficiency control:</b> Transfect BBa_K1150020 with the same crRNA Plasmids as in the first transfection.</li>
+
<li> <b>Target efficiency control:</b> Transfect BBa_K1150020 with the same crRNA plasmids as in the first transfection.</li>
</ol>
</ol>
 +
 +
<a href="https://static.igem.org/mediawiki/2013/2/2b/2_manual_pdf_freiburg.pdf"> <img src="https://static.igem.org/mediawiki/2013/9/9d/Printknopf_freiburg_13.png" width="100px" border="0"  style="margin-left:350px; margin-top: 50px;" alt=""> </a>
</div>
</div>
Line 989: Line 1,026:
</div>
</div>
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
<div id="check-9" class="toHide3" style="display:none">
<div id="check-9" class="toHide3" style="display:none">
bliii
bliii
</div>
</div>
 +
 +
 +
 +
 +
 +
 +
 +
 +
<div id="check-10" class="toHide3" style="display:none">
<div id="check-10" class="toHide3" style="display:none">
Line 1,002: Line 1,058:
<p id="h1">
<p id="h1">
-
UVB light inducible uniCAS Activator (Cas9-UVR8 & COP1-VP16 devices)
+
UVB light inducible uniCAS Activator (dCas9-UVR8 & COP1-VP16 devices)
</p>
</p>
<p>
<p>
-
You have chosen to activate a gene using a UVB light inducible Cas9-UVR8 & COP1-VP16 device. Therefore you have to order the following plasmids from the <a id="link" href="http://parts.igem.org/Main_Page"> iGEM parts registry </a>. After receiving our plasmids, you will have to clone your target sequence into our crRNA plasmid (protocol see below).
+
You have chosen to activate a gene using a UVB light inducible dCas9-UVR8 & COP1-VP16 device. Therefore you have to order the following plasmids from the <a id="link" href="http://parts.igem.org/Main_Page"> iGEM parts registry</a>. After receiving our plasmids, you will have to clone your target sequence into our crRNA plasmid (protocol see below).
</p>
</p>
Line 1,015: Line 1,071:
<th> Device </th>
<th> Device </th>
<th> Order </th>
<th> Order </th>
-
<th> GeneBank File </th>
+
<!--<th> GeneBank File </th>-->
</tr>
</tr>
<tr>
<tr>
<td> 1 </td>
<td> 1 </td>
<td> BBa_K1150029 </td>
<td> BBa_K1150029 </td>
-
<td> CMV-HA-NLS-Cas9-L3-UVR8-NLS-BGH </td>
+
<td> CMV:HA-NLS-dCas9-L3-UVR8-NLS:BGH </td>
<td> <a id="link" href="http://parts.igem.org/partsdb/get_part.cgi?part=BBa_K1150029"> order </a> </td>
<td> <a id="link" href="http://parts.igem.org/partsdb/get_part.cgi?part=BBa_K1150029"> order </a> </td>
-
<td> <a id="link" href=""> genebank </a> </td>
+
<!--<td> <a id="link" href=""> genebank </a> </td>-->
</tr>
</tr>
<tr>
<tr>
<td> 2 </td>
<td> 2 </td>
<td> BBa_K1150030 </td>
<td> BBa_K1150030 </td>
-
<td> CMV-NLS-COP1-L3-VP16-NLS-BGH </td>
+
<td> CMV:NLS-COP1-L3-VP16-NLS:BGH </td>
<td> <a id="link" href="http://parts.igem.org/partsdb/get_part.cgi?part=BBa_K1150030"> order </a> </td>
<td> <a id="link" href="http://parts.igem.org/partsdb/get_part.cgi?part=BBa_K1150030"> order </a> </td>
-
<td> <a id="link" href=""> genebank </a> </td>
+
<!--<td> <a id="link" href=""> genebank </a> </td>-->
</tr>
</tr>
<tr>
<tr>
<td> 3 </td>
<td> 3 </td>
<td> BBa_K1150020 </td>
<td> BBa_K1150020 </td>
-
<td> CMV-HA-NLS-Cas9-L3-VP16-NLS-BGH </td>
+
<td> CMV:HA-NLS-dCas9-L3-VP16-NLS:BGH </td>
<td> <a id="link" href="http://parts.igem.org/partsdb/get_part.cgi?part=BBa_K1150020"> order </a> </td>
<td> <a id="link" href="http://parts.igem.org/partsdb/get_part.cgi?part=BBa_K1150020"> order </a> </td>
-
<td> <a id="link" href=""> genebank </a> </td>
+
<!--<td> <a id="link" href=""> genebank </a> </td>-->
</tr>
</tr>
<tr>
<tr>
<td> 4 </td>
<td> 4 </td>
<td> BBa_K1150034 </td>
<td> BBa_K1150034 </td>
-
<td> crRNA - plasmid </td>
+
<td> RNAimer - plasmid (crRNA - plasmid)</td>
<td> <a id="link" href="http://parts.igem.org/partsdb/get_part.cgi?part=BBa_K1150034"> order </a> </td>
<td> <a id="link" href="http://parts.igem.org/partsdb/get_part.cgi?part=BBa_K1150034"> order </a> </td>
-
<td> <a id="link" href=""> genebank </a> </td>
+
<!--<td> <a id="link" href=""> genebank </a> </td>-->
</tr>
</tr>
Line 1,053: Line 1,109:
<p>
<p>
Note: <br>
Note: <br>
-
All plasmids are optimized for expression in mammalian systems. The devices are also available containing an SV40 instead of an CMV promotor (have a look at our <a id="link" href="https://2013.igem.org/Team:Freiburg/parts"> parts </a> side). This system was tested mainly in CHO-K1, HEK-293T and HeLa cells.  
+
All plasmids are optimized for expression in mammalian systems. The devices are also available containing a SV40 instead of a CMV promotor (have a look at our <a id="link" href="https://2013.igem.org/Team:Freiburg/parts"> parts</a> side). This system was tested mainly in CHO-K1 and HEK-293T cells.  
</p>
</p>
Line 1,076: Line 1,132:
<ol>
<ol>
-
<li> <b>Oligo annealing:</b> Anneal forward and reverse oligo to get the desired crRNA. Therefore mix 10 µl of 100 µM forward Oligo, 10 µl of 100 µM reverse Oligo and 80 µl of ddH2O. Heat the solution to 95° C for 5 minutes. Then turn off the heat block and let the solution cool down.</li>
+
<li> <b>Oligo annealing:</b> Anneal forward and reverse oligos to get the desired crRNA. Therefore mix 10 µl of 100 µM forward Oligo, 10 µl of 100 µM reverse Oligo and 80 µl of ddH2O. Heat the solution to 95° C for 5 minutes. Then turn off the heat block and let the solution cool down.</li>
-
<li> <b>Digest plasmid BBa_K1150034 with Bbs1:</b> The restriction enzyme Bbs1 should always be stored at -80° C. Mix about 500 ng of BBa_K1150034 with 1 µl of Bbs1, appropriate amount of buffer and fill up to 50 µl with ddH2O. Digest for exact 3 hours at 37° C. Put digest on a gel and cut the DNA band (2900 bp) out. Purify the gel slice and use DNA for the next step.</li>
+
<li> <b>Digest plasmid BBa_K1150034 with Bbs1:</b> The restriction enzyme Bbs1 should always be stored at -80° C. Mix about 500 ng of BBa_K1150034 with 1 µl of Bbs1, appropriate amount of buffer and fill up to 50 µl with ddH2O. Digest for exactly 3 hours at 37° C. Load the digest on a gel and cut out the DNA band (2900 bp). Purify the gel slice and use DNA for the next step.</li>
-
<li> <b>Ligate crRNAs (step 1) into Bbs1 cut backbone:</b> The insert (crRNAs) should be ligated into the backbone in 3 molar insert excess. Therefore use this formular: Required Volume of Insert = 3 x Volume(Backbone) x length(Insert) x concentration (Backbone) / [ length(Backbone)  x concentration(Insert) ]. Use about 50 ng Bacbbone. The length of insert is always 30 basepairs. The length of the backbone is 2900 basepairs. You have to mix the appropriate amount of Backbone and the appropriate amount of Insert with 1 µl of T4 Ligase and 2 µl of 10xT4 ligase buffer. Then fill up to 20 µl with ddH2O. This mix should incubate for 30 minutes at room temperature.</li>
+
<li> <b>Ligate crRNAs (step 1) into Bbs1 cut backbone:</b> The insert (crRNAs) should be ligated into the backbone in 3 molar insert excess. Therefore use this formular: Required Volume of Insert = 3 x Volume(Backbone) x length(Insert) x concentration (Backbone) / [ length(Backbone)  x concentration(Insert) ]. Use about 50 ng of backbone. The length of insert is always 30 basepairs. The length of the backbone is 2900 basepairs. You have to mix the appropriate amount of Backbone and the appropriate amount of Insert with 1 µl of T4 ligase and 2 µl of 10xT4 ligase buffer. Then fill up to 20 µl with ddH2O. This mix should be incubated for 30 minutes at room temperature.</li>
-
<li> <b>Transform</b> 3-5 µl of the mix following standard protocol. Pick clones, miniprep the plasmids and sequence it with pSB1C3 reverse sequencing primer (sequence: CGCCTTTGAGTGAGCTGATACCGC).</li>
+
<li> <b>Transform</b> 3-5 µl of the mix following <a id="link" href="https://2013.igem.org/Team:Freiburg/protocols#Transformation">standard protocol</a>. Pick clones, miniprep the plasmids and sequence it with pSB1C3 reverse sequencing primer (sequence: CGCCTTTGAGTGAGCTGATACCGC).</li>
</ol>
</ol>
Line 1,096: Line 1,152:
<ol>
<ol>
-
<li> <b>Digest first crRNA plasmid</b> with XXX and XXX in order to linearize it. Both enzymes cut in the suffix. Using the <a id="link" href="http://parts.igem.org/Help:Assembly/3A_Assembly">BioBrick Assembly method</a>, it is possible to assemble multiple crRNA sequences in one plasmid. Therefore mix about 500 ng Backbone with 1 µl Enzyme 1 and 1 µl Enzyme 2, add an appropriate amount of compatible buffer and fill up to approximate 30-50 µl. Incubate mix at 37° C for 2 hours. </li>
+
<li> <b>First of all digest crRNA plasmid</b> with PstI and SpeI in order to linearize it. Both enzymes cut in the suffix. Using the <a id="link" href="http://parts.igem.org/Help:Assembly/3A_Assembly">BioBrick Assembly method</a>, it is possible to assemble multiple crRNA sequences into one plasmid. Therefore mix about 500 ng Backbone with 1 µl enzyme 1 and 1 µl enzyme 2, add an appropriate amount of compatible buffer and fill up to 30-50 µl. Incubate mix at 37° C for 2 hours. </li>
-
<li> <b>Digest second crRNA plasmid</b> with XXX and XXX. Using the <a id="link" href="http://parts.igem.org/Help:Assembly/3A_Assembly">BioBrick Assembly method</a>, this is your insert (procedure see above).</li>
+
<li> <b>Secondly digest crRNA plasmid</b> with PstI and XbaI. Using the <a id="link" href="http://parts.igem.org/Help:Assembly/3A_Assembly">BioBrick Assembly method</a>, this is your insert (procedure see above).</li>
-
<li>  Put digests on a gel and cut the DNA bands out (Backbone 2900 bp, Insert 870 bp). Purify the gel slice and use DNA for the next step.</li>
+
<li>  Load digests on a gel and cut out the DNA bands (Backbone 2900 bp, Insert 870 bp). Purify the gel slice and use DNA for the next step.</li>
<li> <b>Ligate</b> the insert in 3 molar excess into the backbone (formular see paragraph above).</li>
<li> <b>Ligate</b> the insert in 3 molar excess into the backbone (formular see paragraph above).</li>
-
<li> <b>Transform</b> 3-5 µl of the mix following standard protocol. Pick clones, miniprep the plasmids and sequence it with pSB1C3 forward sequencing primer (sequence: GAGTGCCACCTGACGTCTAAGAAAC) and pSB1C3 reverse sequencing primer (sequence: CGCCTTTGAGTGAGCTGATACCGC).</li>
+
<li> <b>Transform</b> 3-5 µl of the mix following <a id="link" href="https://2013.igem.org/Team:Freiburg/protocols#Transformation">standard protocol</a>. Pick clones, miniprep the plasmids and sequence it with pSB1C3 forward sequencing primer (sequence: GAGTGCCACCTGACGTCTAAGAAAC) and pSB1C3 reverse sequencing primer (sequence: CGCCTTTGAGTGAGCTGATACCGC).</li>
<li> These steps can be repeated various times. Using this method, you can engineer a plasmid with several crRNA targets!</li>
<li> These steps can be repeated various times. Using this method, you can engineer a plasmid with several crRNA targets!</li>
</ol>
</ol>
Line 1,109: Line 1,165:
<p>
<p>
-
For UVB light experiments transfect the following plasmid combinations on two different well plates. One plate will be illuminated with 311 nm for 24 hours. This is the UVB light induced plate. The other plate will be wrapped in aluminum foil. This is the no-induction control. See our <a id="link" href="https://2013.igem.org/Team:Freiburg/Project/induction#light">light induction project page</a>.
+
For UVB light experiments transfect the following plasmid combinations on two different well plates. One plate will be illuminated with 311 nm at 5 µE for 24 hours. This is the UVB light induced plate. The other plate will be wrapped in aluminum foil. This is the no-induction control. See our <a id="link" href="https://2013.igem.org/Team:Freiburg/Project/induction#light">light induction project page</a>.
</p>
</p>
Line 1,115: Line 1,171:
<li> <b>Transfect</b> BBa_K1150029, BBa_K1150030 with all desired crRNA plasmids (seperate crRNA plasmid and/or multiple crRNAs plasmid) </li>
<li> <b>Transfect</b> BBa_K1150029, BBa_K1150030 with all desired crRNA plasmids (seperate crRNA plasmid and/or multiple crRNAs plasmid) </li>
<li> <b>Off target control:</b> Transfect BBa_K1150029, BBa_K1150030 without any crRNA plasmid.</li>
<li> <b>Off target control:</b> Transfect BBa_K1150029, BBa_K1150030 without any crRNA plasmid.</li>
-
<li> <b>Target efficiency control:</b> Transfect BBa_K1150020 with the same crRNA Plasmids as in the first transfection.</li>
+
<li> <b>Target efficiency control:</b> Transfect BBa_K1150020 with the same crRNA plasmids as in the first transfection.</li>
</ol>
</ol>
 +
<a href="https://static.igem.org/mediawiki/2013/d/dd/3_manual_pdf_freiburg.pdf"> <img src="https://static.igem.org/mediawiki/2013/9/9d/Printknopf_freiburg_13.png" width="100px" border="0"  style="margin-left:350px; margin-top: 50px;" alt=""> </a>
</div>
</div>
Line 1,125: Line 1,182:
</div>
</div>
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
<div id="check-11" class="toHide3" style="display:none">
<div id="check-11" class="toHide3" style="display:none">
Line 1,141: Line 1,208:
blabla blabla blabla blabla blabla blabla blabla blabla blabla blabla blabla blabla
blabla blabla blabla blabla blabla blabla blabla blabla blabla blabla blabla blabla
</div>
</div>
 +
 +
 +
 +
 +
<div id="check-15" class="toHide3" style="display:none">
<div id="check-15" class="toHide3" style="display:none">
Line 1,150: Line 1,222:
<p id="h1">
<p id="h1">
-
Non inducible uniCAS Repressor (Cas9-KRAB device)
+
Non inducible uniCAS Repressor (dCas9-KRAB device)
</p>
</p>
<p>
<p>
-
You have chosen to repress a gene using a non inducible Cas9-KRAB device. Therefore you have to order the following plasmids from the <a id="link" href="http://parts.igem.org/Main_Page"> iGEM parts registry </a>. After receiving our plasmids, you will have to clone your target sequence into our crRNA plasmid (protocol see below).
+
You have chosen to repress a gene using a non inducible dCas9-KRAB device. Therefore you have to order the following plasmids from the <a id="link" href="http://parts.igem.org/Main_Page"> iGEM parts registry</a>. After receiving our plasmids, you will have to clone your target sequence into our crRNA plasmid (protocol see below).
</p>
</p>
Line 1,163: Line 1,235:
<th> Device </th>
<th> Device </th>
<th> Order </th>
<th> Order </th>
-
<th> GeneBank File </th>
+
<!--<th> GeneBank File </th>-->
</tr>
</tr>
<tr>
<tr>
<td> 1 </td>
<td> 1 </td>
<td> BBa_K1150017 </td>
<td> BBa_K1150017 </td>
-
<td> CMV-HA-NLS-Cas9-NLS-BGH </td>
+
<td> CMV:HA-NLS-dCas9-NLS:BGH </td>
<td> <a id="link" href="http://parts.igem.org/partsdb/get_part.cgi?part=BBa_K1150017"> order </a> </td>
<td> <a id="link" href="http://parts.igem.org/partsdb/get_part.cgi?part=BBa_K1150017"> order </a> </td>
-
<td> <a id="link" href=""> genebank </a> </td>
+
<!--<td> <a id="link" href=""> genebank </a> </td>-->
</tr>
</tr>
<tr>
<tr>
<td> 2 </td>
<td> 2 </td>
<td> BBa_K1150022 </td>
<td> BBa_K1150022 </td>
-
<td> CMV-HA-NLS-Cas9-L3-KRAB-NLS-BGH </td>
+
<td> CMV:HA-NLS-dCas9-L3-KRAB-NLS:BGH </td>
<td> <a id="link" href="http://parts.igem.org/partsdb/get_part.cgi?part=BBa_K1150022"> order </a> </td>
<td> <a id="link" href="http://parts.igem.org/partsdb/get_part.cgi?part=BBa_K1150022"> order </a> </td>
-
<td> <a id="link" href=""> genebank </a> </td>
+
<!--<td> <a id="link" href=""> genebank </a> </td>-->
</tr>
</tr>
<tr>
<tr>
<td> 3 </td>
<td> 3 </td>
<td> BBa_K1150034 </td>
<td> BBa_K1150034 </td>
-
<td> crRNA - plasmid </td>
+
<td> RNAimer - plasmid (crRNA - plasmid)</td>
<td> <a id="link" href="http://parts.igem.org/partsdb/get_part.cgi?part=BBa_K1150034"> order </a> </td>
<td> <a id="link" href="http://parts.igem.org/partsdb/get_part.cgi?part=BBa_K1150034"> order </a> </td>
-
<td> <a id="link" href=""> genebank </a> </td>
+
<!--<td> <a id="link" href=""> genebank </a> </td>-->
</tr>
</tr>
Line 1,193: Line 1,265:
<p>
<p>
Note: <br>
Note: <br>
-
All plasmids are optimized for expression in mammalian systems. The devices are also available containing an SV40 instead of an CMV promotor (have a look at our <a id="link" href="https://2013.igem.org/Team:Freiburg/parts"> parts </a> side). This system was tested mainly in CHO-K1, HEK-293T and HeLa cells.  
+
All plasmids are optimized for expression in mammalian systems. The devices are also available containing a SV40 instead of a CMV promotor (have a look at our <a id="link" href="https://2013.igem.org/Team:Freiburg/parts"> parts</a> side). This system was tested mainly in CHO-K1 and HEK-293T cells.  
</p>
</p>
Line 1,216: Line 1,288:
<ol>
<ol>
-
<li> <b>Oligo annealing:</b> Anneal forward and reverse oligo to get the desired crRNA. Therefore mix 10 µl of 100 µM forward Oligo, 10 µl of 100 µM reverse Oligo and 80 µl of ddH2O. Heat the solution to 95° C for 5 minutes. Then turn off the heat block and let the solution cool down.</li>
+
<li> <b>Oligo annealing:</b> Anneal forward and reverse oligos to get the desired crRNA. Therefore mix 10 µl of 100 µM forward Oligo, 10 µl of 100 µM reverse Oligo and 80 µl of ddH2O. Heat the solution to 95° C for 5 minutes. Then turn off the heat block and let the solution cool down.</li>
-
<li> <b>Digest plasmid BBa_K1150034 with Bbs1:</b> The restriction enzyme Bbs1 should always be stored at -80° C. Mix about 500 ng of BBa_K1150034 with 1 µl of Bbs1, appropriate amount of buffer and fill up to 50 µl with ddH2O. Digest for exact 3 hours at 37° C. Put digest on a gel and cut the DNA band (2900 bp) out. Purify the gel slice and use DNA for the next step.</li>
+
<li> <b>Digest plasmid BBa_K1150034 with Bbs1:</b> The restriction enzyme Bbs1 should always be stored at -80° C. Mix about 500 ng of BBa_K1150034 with 1 µl of Bbs1, appropriate amount of buffer and fill up to 50 µl with ddH2O. Digest for exactly 3 hours at 37° C. Load the digest on a gel and cut out the DNA band (2900 bp). Purify the gel slice and use DNA for the next step.</li>
-
<li> <b>Ligate crRNAs (step 1) into Bbs1 cut backbone:</b> The insert (crRNAs) should be ligated into the backbone in 3 molar insert excess. Therefore use this formular: Required Volume of Insert = 3 x Volume(Backbone) x length(Insert) x concentration (Backbone) / [ length(Backbone)  x concentration(Insert) ]. Use about 50 ng Bacbbone. The length of insert is always 30 basepairs. The length of the backbone is 2900 basepairs. You have to mix the appropriate amount of Backbone and the appropriate amount of Insert with 1 µl of T4 Ligase and 2 µl of 10xT4 ligase buffer. Then fill up to 20 µl with ddH2O. This mix should incubate for 30 minutes at room temperature.</li>
+
<li> <b>Ligate crRNAs (step 1) into Bbs1 cut backbone:</b> The insert (crRNAs) should be ligated into the backbone in 3 molar insert excess. Therefore use this formular: Required Volume of Insert = 3 x Volume(Backbone) x length(Insert) x concentration (Backbone) / [ length(Backbone)  x concentration(Insert) ]. Use about 50 ng of backbone. The length of insert is always 30 basepairs. The length of the backbone is 2900 basepairs. You have to mix the appropriate amount of Backbone and the appropriate amount of Insert with 1 µl of T4 ligase and 2 µl of 10xT4 ligase buffer. Then fill up to 20 µl with ddH2O. This mix should be incubated for 30 minutes at room temperature.</li>
-
<li> <b>Transform</b> 3-5 µl of the mix following standard protocol. Pick clones, miniprep the plasmids and sequence it with pSB1C3 reverse sequencing primer (sequence: CGCCTTTGAGTGAGCTGATACCGC).</li>
+
<li> <b>Transform</b> 3-5 µl of the mix following <a id="link" href="https://2013.igem.org/Team:Freiburg/protocols#Transformation">standard protocol</a>. Pick clones, miniprep the plasmids and sequence it with pSB1C3 reverse sequencing primer (sequence: CGCCTTTGAGTGAGCTGATACCGC).</li>
</ol>
</ol>
Line 1,236: Line 1,308:
<ol>
<ol>
-
<li> <b>Digest first crRNA plasmid</b> with XXX and XXX in order to linearize it. Both enzymes cut in the suffix. Using the <a id="link" href="http://parts.igem.org/Help:Assembly/3A_Assembly">BioBrick Assembly method</a>, it is possible to assemble multiple crRNA sequences in one plasmid. Therefore mix about 500 ng Backbone with 1 µl Enzyme 1 and 1 µl Enzyme 2, add an appropriate amount of compatible buffer and fill up to approximate 30-50 µl. Incubate mix at 37° C for 2 hours. </li>
+
<li> <b>First of all digest crRNA plasmid</b> with PstI and SpeI in order to linearize it. Both enzymes cut in the suffix. Using the <a id="link" href="http://parts.igem.org/Help:Assembly/3A_Assembly">BioBrick Assembly method</a>, it is possible to assemble multiple crRNA sequences into one plasmid. Therefore mix about 500 ng Backbone with 1 µl enzyme 1 and 1 µl enzyme 2, add an appropriate amount of compatible buffer and fill up to 30-50 µl. Incubate mix at 37° C for 2 hours. </li>
-
<li> <b>Digest second crRNA plasmid</b> with XXX and XXX. Using the <a id="link" href="http://parts.igem.org/Help:Assembly/3A_Assembly">BioBrick Assembly method</a>, this is your insert (procedure see above).</li>
+
<li> <b>Secondly digest crRNA plasmid</b> with PstI and XbaI. Using the <a id="link" href="http://parts.igem.org/Help:Assembly/3A_Assembly">BioBrick Assembly method</a>, this is your insert (procedure see above).</li>
-
<li> Put digests on a gel and cut the DNA bands out (Backbone 2900 bp, Insert 870 bp). Purify the gel slice and use DNA for the next step.</li>
+
<li> Load digests on a gel and cut out the DNA bands (Backbone 2900 bp, Insert 870 bp). Purify the gel slice and use DNA for the next step.</li>
<li> <b>Ligate</b> the insert in 3 molar excess into the backbone (formular see paragraph above).</li>
<li> <b>Ligate</b> the insert in 3 molar excess into the backbone (formular see paragraph above).</li>
-
<li> <b>Transform</b> 3-5 µl of the mix following standard protocol. Pick clones, miniprep the plasmids and sequence it with pSB1C3 forward sequencing primer (sequence: GAGTGCCACCTGACGTCTAAGAAAC) and pSB1C3 reverse sequencing primer (sequence: CGCCTTTGAGTGAGCTGATACCGC).</li>
+
<li> <b>Transform</b> 3-5 µl of the mix following <a id="link" href="https://2013.igem.org/Team:Freiburg/protocols#Transformation">standard protocol</a>. Pick clones, miniprep the plasmids and sequence it with pSB1C3 forward sequencing primer (sequence: GAGTGCCACCTGACGTCTAAGAAAC) and pSB1C3 reverse sequencing primer (sequence: CGCCTTTGAGTGAGCTGATACCGC).</li>
<li> These steps can be repeated various times. Using this method, you can engineer a plasmid with several crRNA targets!</li>
<li> These steps can be repeated various times. Using this method, you can engineer a plasmid with several crRNA targets!</li>
</ol>
</ol>
Line 1,250: Line 1,322:
<ol>
<ol>
<li> <b>Transfect</b> BBa_K1150022 (4 fold excess) with all desired crRNA plasmids (seperate crRNA plasmid and/or multiple crRNAs plasmid) </li>
<li> <b>Transfect</b> BBa_K1150022 (4 fold excess) with all desired crRNA plasmids (seperate crRNA plasmid and/or multiple crRNAs plasmid) </li>
-
<li> <b>Non-effector control:</b> Transfect the appropriate crRNA - plasmid togehter with BBa_K1150017 that has no effector.</li>
+
<li> <b>Non-effector control:</b> Transfect the appropriate crRNA - plasmid together with BBa_K1150017 that has no effector.</li>
<li> <b>Off target control:</b> Transfect BBa_K1150022 without any crRNA plasmid.</li>
<li> <b>Off target control:</b> Transfect BBa_K1150022 without any crRNA plasmid.</li>
</ol>
</ol>
-
+
<a href="https://static.igem.org/mediawiki/2013/d/dc/4_manual_pdf_freiburg.pdf"> <img src="https://static.igem.org/mediawiki/2013/9/9d/Printknopf_freiburg_13.png" width="100px" border="0"  style="margin-left:350px; margin-top: 50px;" alt=""> </a>
 +
 
</div>
</div>
</div>
</div>
Line 1,262: Line 1,335:
</div>
</div>
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
<div id="check-16" class="toHide3" style="display:none">
<div id="check-16" class="toHide3" style="display:none">
Line 1,271: Line 1,354:
<p id="h1">
<p id="h1">
-
Red light inducible uniCAS Repressor (Cas9-PIF6 & PhyB-KRAB devices)
+
Red light inducible uniCAS Repressor (dCas9-PIF6 & PhyB-KRAB devices)
</p>
</p>
<p>
<p>
-
You have chosen to repress a gene using a non inducible Cas9-KRAB device. Therefore you have to order the  
+
You have chosen to repress a gene using a non inducible dCas9-KRAB device. Therefore you have to order the  
-
following plasmids from the <a id="link" href="http://parts.igem.org/Main_Page"> iGEM parts registry </a>. After receiving our  
+
following plasmids from the <a id="link" href="http://parts.igem.org/Main_Page"> iGEM parts registry</a>. After receiving our  
plasmids, you will have to clone your target sequence into our crRNA plasmid (protocol see below).
plasmids, you will have to clone your target sequence into our crRNA plasmid (protocol see below).
Line 1,288: Line 1,371:
<th> Device </th>
<th> Device </th>
<th> Order </th>
<th> Order </th>
-
<th> GeneBank File </th>
+
<!--<th> GeneBank File </th>-->
</tr>
</tr>
<tr>
<tr>
<td> 1 </td>
<td> 1 </td>
<td> BBa_K1150025 </td>
<td> BBa_K1150025 </td>
-
<td> CMV-HA-NLS-Cas9-L3-PIF6-NLS-BGH </td>
+
<td> CMV:HA-NLS-dCas9-L3-PIF6-NLS:BGH </td>
<td> <a id="link" href="http://parts.igem.org/partsdb/get_part.cgi?part=BBa_K1150025">  
<td> <a id="link" href="http://parts.igem.org/partsdb/get_part.cgi?part=BBa_K1150025">  
order </a> </td>
order </a> </td>
-
<td> <a id="link" href=""> genebank </a> </td>
+
<!--<td> <a id="link" href=""> genebank </a> </td>-->
</tr>
</tr>
<tr>
<tr>
<td> 2 </td>
<td> 2 </td>
<td> BBa_K1150027 </td>
<td> BBa_K1150027 </td>
-
<td> CMV-NLS-PhyB-L3-KRAB-NLS-BGH </td>
+
<td> CMV:NLS-PhyB-L3-KRAB-NLS:BGH </td>
<td> <a id="link" href="http://parts.igem.org/partsdb/get_part.cgi?part=BBa_K1150027">  
<td> <a id="link" href="http://parts.igem.org/partsdb/get_part.cgi?part=BBa_K1150027">  
order </a> </td>
order </a> </td>
-
<td> <a id="link" href=""> genebank </a> </td>
+
<!--<td> <a id="link" href=""> genebank </a> </td>-->
</tr>
</tr>
<tr>
<tr>
<td> 3 </td>
<td> 3 </td>
<td> BBa_K1150022 </td>
<td> BBa_K1150022 </td>
-
<td> CMV-HA-NLS-Cas9-L3-KRAB-NLS-BGH </td>
+
<td> CMV:HA-NLS-dCas9-L3-KRAB-NLS:BGH </td>
<td> <a id="link" href="http://parts.igem.org/partsdb/get_part.cgi?part=BBa_K1150022">  
<td> <a id="link" href="http://parts.igem.org/partsdb/get_part.cgi?part=BBa_K1150022">  
order </a> </td>
order </a> </td>
-
<td> <a id="link" href=""> genebank </a> </td>
+
<!--<td> <a id="link" href=""> genebank </a> </td>-->
</tr>
</tr>
<tr>
<tr>
<td> 4 </td>
<td> 4 </td>
<td> BBa_K1150034 </td>
<td> BBa_K1150034 </td>
-
<td> crRNA - plasmid </td>
+
<td> RNAimer - plasmid (crRNA - plasmid)</td>
<td> <a id="link" href="http://parts.igem.org/partsdb/get_part.cgi?part=BBa_K1150034">  
<td> <a id="link" href="http://parts.igem.org/partsdb/get_part.cgi?part=BBa_K1150034">  
order </a> </td>
order </a> </td>
-
<td> <a id="link" href=""> genebank </a> </td>
+
<!--<td> <a id="link" href=""> genebank </a> </td>-->
</tr>
</tr>
Line 1,336: Line 1,419:
All plasmids are optimized for expression in mammalian systems. The devices are also available containing  
All plasmids are optimized for expression in mammalian systems. The devices are also available containing  
-
an SV40 instead of an CMV promotor (have a look at our <a id="link" href="https://2013.igem.org/Team:Freiburg/parts"> parts </a>  
+
a SV40 instead of a CMV promotor (have a look at our <a id="link" href="https://2013.igem.org/Team:Freiburg/parts"> parts</a>  
-
side). This system was tested mainly in CHO-K1, HEK-293T and HeLa cells.  
+
side). This system was tested mainly in CHO-K1 and HEK-293T cells.  
</p>
</p>
Line 1,365: Line 1,448:
<ol>
<ol>
-
<li> <b>Oligo annealing:</b> Anneal forward and reverse oligo to get the desired crRNA. Therefore  
+
<li> <b>Oligo annealing:</b> Anneal forward and reverse oligos to get the desired crRNA. Therefore  
mix 10 µl of 100 µM forward Oligo, 10 µl of 100 µM reverse Oligo and 80 µl of ddH2O. Heat the solution to 95° C for 5 minutes.  
mix 10 µl of 100 µM forward Oligo, 10 µl of 100 µM reverse Oligo and 80 µl of ddH2O. Heat the solution to 95° C for 5 minutes.  
Line 1,374: Line 1,457:
stored at -80° C. Mix about 500 ng of BBa_K1150034 with 1 µl of Bbs1, appropriate amount of buffer and fill up to 50 µl with  
stored at -80° C. Mix about 500 ng of BBa_K1150034 with 1 µl of Bbs1, appropriate amount of buffer and fill up to 50 µl with  
-
ddH2O. Digest for exact 3 hours at 37° C. Put digest on a gel and cut the DNA band (2900 bp) out. Purify the gel slice and use  
+
ddH2O. Digest for exactly 3 hours at 37° C. Load the digest on a gel and cut out the DNA band (2900 bp). Purify the gel slice and use  
DNA for the next step.</li>
DNA for the next step.</li>
Line 1,381: Line 1,464:
into the backbone in 3 molar insert excess. Therefore use this formular: Required Volume of Insert = 3 x Volume(Backbone) x  
into the backbone in 3 molar insert excess. Therefore use this formular: Required Volume of Insert = 3 x Volume(Backbone) x  
-
length(Insert) x concentration (Backbone) / [ length(Backbone)  x concentration(Insert) ]. Use about 50 ng Bacbbone. The length  
+
length(Insert) x concentration (Backbone) / [ length(Backbone)  x concentration(Insert) ]. Use about 50 ng of backbone. The length  
of insert is always 30 basepairs. The length of the backbone is 2900 basepairs. You have to mix the appropriate amount of  
of insert is always 30 basepairs. The length of the backbone is 2900 basepairs. You have to mix the appropriate amount of  
-
Backbone and the appropriate amount of Insert with 1 µl of T4 Ligase and 2 µl of 10xT4 ligase buffer. Then fill up to 20 µl with  
+
Backbone and the appropriate amount of Insert with 1 µl of T4 ligase and 2 µl of 10xT4 ligase buffer. Then fill up to 20 µl with  
-
ddH2O. This mix should incubate for 30 minutes at room temperature.</li>
+
ddH2O. This mix should be incubated for 30 minutes at room temperature.</li>
-
<li> <b>Transform</b> 3-5 µl of the mix following standard protocol. Pick clones, miniprep the  
+
<li> <b>Transform</b> 3-5 µl of the mix following <a id="link" href="https://2013.igem.org/Team:Freiburg/protocols#Transformation">standard protocol</a>. Pick clones, miniprep the  
plasmids and sequence it with pSB1C3 reverse sequencing primer (sequence: CGCCTTTGAGTGAGCTGATACCGC).</li>
plasmids and sequence it with pSB1C3 reverse sequencing primer (sequence: CGCCTTTGAGTGAGCTGATACCGC).</li>
Line 1,413: Line 1,496:
<ol>
<ol>
-
<li> <b>Digest first crRNA plasmid</b> with XXX and XXX in order to linearize it. Both enzymes  
+
<li> <b>First of all digest crRNA plasmid</b> with PstI and SpeI in order to linearize it. Both enzymes  
cut in the suffix. Using the <a id="link" href="http://parts.igem.org/Help:Assembly/3A_Assembly">BioBrick Assembly method</a>, it  
cut in the suffix. Using the <a id="link" href="http://parts.igem.org/Help:Assembly/3A_Assembly">BioBrick Assembly method</a>, it  
-
is possible to assemble multiple crRNA sequences in one plasmid. Therefore mix about 500 ng Backbone with 1 µl Enzyme 1 and 1 µl  
+
is possible to assemble multiple crRNA sequences into one plasmid. Therefore mix about 500 ng Backbone with 1 µl enzyme 1 and 1 µl  
-
Enzyme 2, add an appropriate amount of compatible buffer and fill up to approximate 30-50 µl. Incubate mix at 37° C for 2 hours.  
+
enzyme 2, add an appropriate amount of compatible buffer and fill up to 30-50 µl. Incubate mix at 37° C for 2 hours.  
</li>
</li>
-
<li> <b>Digest second crRNA plasmid</b> with XXX and XXX. Using the <a id="link"  
+
<li> <b>Secondly digest crRNA plasmid</b> with PstI and XbaI. Using the <a id="link"  
href="http://parts.igem.org/Help:Assembly/3A_Assembly">BioBrick Assembly method</a>, this is your insert (procedure see  
href="http://parts.igem.org/Help:Assembly/3A_Assembly">BioBrick Assembly method</a>, this is your insert (procedure see  
above).</li>
above).</li>
-
<li>  Put digests on a gel and cut the DNA bands out (Backbone 2900 bp, Insert 870 bp). Purify  
+
<li>  Load digests on a gel and cut out the DNA bands (Backbone 2900 bp, Insert 870 bp). Purify  
the gel slice and use DNA for the next step.</li>
the gel slice and use DNA for the next step.</li>
Line 1,433: Line 1,516:
above).</li>
above).</li>
-
<li> <b>Transform</b> 3-5 µl of the mix following standard protocol. Pick clones, miniprep the  
+
<li> <b>Transform</b> 3-5 µl of the mix following <a id="link" href="https://2013.igem.org/Team:Freiburg/protocols#Transformation">standard protocol</a>. Pick clones, miniprep the  
plasmids and sequence it with pSB1C3 forward sequencing primer (sequence: GAGTGCCACCTGACGTCTAAGAAAC) and pSB1C3 reverse  
plasmids and sequence it with pSB1C3 forward sequencing primer (sequence: GAGTGCCACCTGACGTCTAAGAAAC) and pSB1C3 reverse  
Line 1,452: Line 1,535:
plate will be illuminated with 660 nm for 48 hours. This is the red light induced plate. The other plate will be illuminated with  
plate will be illuminated with 660 nm for 48 hours. This is the red light induced plate. The other plate will be illuminated with  
-
740 nm. This is the no-induction control. Before illuminating you have to put PCB in the wells. See our <a id="link"  
+
740 nm. This is the no-induction control. If not working in plant systems add 15µM of PCB prior to illumination and incubate for at least 1h. See our <a id="link"  
href="https://2013.igem.org/Team:Freiburg/Project/induction#light">light induction project page</a>.
href="https://2013.igem.org/Team:Freiburg/Project/induction#light">light induction project page</a>.
Line 1,469: Line 1,552:
</ol>
</ol>
 +
<a href="https://static.igem.org/mediawiki/2013/0/08/5_manual_pdf_freiburg.pdf"> <img src="https://static.igem.org/mediawiki/2013/9/9d/Printknopf_freiburg_13.png" width="100px" border="0"  style="margin-left:350px; margin-top: 50px;" alt=""> </a>
</div>
</div>
Line 1,478: Line 1,562:
</div>
</div>
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
<div id="check-17" class="toHide3" style="display:none">
<div id="check-17" class="toHide3" style="display:none">
Line 1,491: Line 1,587:
<p id="h1">
<p id="h1">
-
UVB light inducible uniCAS Repressor (Cas9-UVR8 & COP1-KRAB devices)
+
UVB light inducible uniCAS Repressor (dCas9-UVR8 & COP1-KRAB devices)
</p>
</p>
<p>
<p>
-
You have chosen to repress a gene using a UVB light inducible Cas9-UVR8 & COP1-KRAB device. Therefore you have to order the following plasmids from the <a id="link" href="http://parts.igem.org/Main_Page"> iGEM parts registry </a>. After receiving our plasmids, you will have to clone your target sequence into our crRNA plasmid (protocol see below).
+
You have chosen to repress a gene using a UVB light inducible dCas9-UVR8 & COP1-KRAB device. Therefore you have to order the following plasmids from the <a id="link" href="http://parts.igem.org/Main_Page"> iGEM parts registry</a>. After receiving our plasmids, you will have to clone your target sequence into our crRNA plasmid (protocol see below).
</p>
</p>
Line 1,504: Line 1,600:
<th> Device </th>
<th> Device </th>
<th> Order </th>
<th> Order </th>
-
<th> GeneBank File </th>
+
<!--<th> GeneBank File </th>-->
</tr>
</tr>
<tr>
<tr>
<td> 1 </td>
<td> 1 </td>
<td> BBa_K1150029 </td>
<td> BBa_K1150029 </td>
-
<td> CMV-HA-NLS-Cas9-L3-UVR8-NLS-BGH </td>
+
<td> CMV:HA-NLS-dCas9-L3-UVR8-NLS:BGH </td>
<td> <a id="link" href="http://parts.igem.org/partsdb/get_part.cgi?part=BBa_K1150029"> order </a> </td>
<td> <a id="link" href="http://parts.igem.org/partsdb/get_part.cgi?part=BBa_K1150029"> order </a> </td>
-
<td> <a id="link" href=""> genebank </a> </td>
+
<!--<td> <a id="link" href=""> genebank </a> </td>-->
</tr>
</tr>
<tr>
<tr>
<td> 2 </td>
<td> 2 </td>
<td> BBa_K1150031 </td>
<td> BBa_K1150031 </td>
-
<td> CMV-NLS-COP1-L3-KRAB-NLS-BGH </td>
+
<td> CMV:NLS-COP1-L3-KRAB-NLS:BGH </td>
-
<td> <a id="link" href="http://parts.igem.org/partsdb/get_part.cgi?part=BBa_K1150030"> order </a> </td>
+
<td> <a id="link" href="http://parts.igem.org/partsdb/get_part.cgi?part=BBa_K1150031"> order </a> </td>
-
<td> <a id="link" href=""> genebank </a> </td>
+
<!--<td> <a id="link" href=""> genebank </a> </td>-->
</tr>
</tr>
<tr>
<tr>
<td> 3 </td>
<td> 3 </td>
<td> BBa_K1150022 </td>
<td> BBa_K1150022 </td>
-
<td> CMV-HA-NLS-Cas9-L3-KRAB-NLS-BGH </td>
+
<td> CMV:HA-NLS-dCas9-L3-KRAB-NLS:BGH </td>
-
<td> <a id="link" href="http://parts.igem.org/partsdb/get_part.cgi?part=BBa_K1150020"> order </a> </td>
+
<td> <a id="link" href="http://parts.igem.org/partsdb/get_part.cgi?part=BBa_K1150022"> order </a> </td>
-
<td> <a id="link" href=""> genebank </a> </td>
+
<!--<td> <a id="link" href=""> genebank </a> </td>-->
</tr>
</tr>
<tr>
<tr>
<td> 4 </td>
<td> 4 </td>
<td> BBa_K1150034 </td>
<td> BBa_K1150034 </td>
-
<td> crRNA - plasmid </td>
+
<td> RNAimer - plasmid (crRNA - plasmid)</td>
<td> <a id="link" href="http://parts.igem.org/partsdb/get_part.cgi?part=BBa_K1150034"> order </a> </td>
<td> <a id="link" href="http://parts.igem.org/partsdb/get_part.cgi?part=BBa_K1150034"> order </a> </td>
-
<td> <a id="link" href=""> genebank </a> </td>
+
<!--<td> <a id="link" href=""> genebank </a> </td>-->
</tr>
</tr>
Line 1,542: Line 1,638:
<p>
<p>
Note: <br>
Note: <br>
-
All plasmids are optimized for expression in mammalian systems. The devices are also available containing an SV40 instead of an CMV promotor (have a look at our <a id="link" href="https://2013.igem.org/Team:Freiburg/parts"> parts </a> side). This system was tested mainly in CHO-K1, HEK-293T and HeLa cells.  
+
All plasmids are optimized for expression in mammalian systems. The devices are also available containing an SV40 instead of an CMV promotor (have a look at our <a id="link" href="https://2013.igem.org/Team:Freiburg/parts"> parts</a> side). This system was tested mainly in CHO-K1 and HEK-293T cells.  
</p>
</p>
Line 1,565: Line 1,661:
<ol>
<ol>
-
<li> <b>Oligo annealing:</b> Anneal forward and reverse oligo to get the desired crRNA. Therefore mix 10 µl of 100 µM forward Oligo, 10 µl of 100 µM reverse Oligo and 80 µl of ddH2O. Heat the solution to 95° C for 5 minutes. Then turn off the heat block and let the solution cool down.</li>
+
<li> <b>Oligo annealing:</b> Anneal forward and reverse oligos to get the desired crRNA. Therefore mix 10 µl of 100 µM forward Oligo, 10 µl of 100 µM reverse Oligo and 80 µl of ddH2O. Heat the solution to 95° C for 5 minutes. Then turn off the heat block and let the solution cool down.</li>
-
<li> <b>Digest plasmid BBa_K1150034 with Bbs1:</b> The restriction enzyme Bbs1 should always be stored at -80° C. Mix about 500 ng of BBa_K1150034 with 1 µl of Bbs1, appropriate amount of buffer and fill up to 50 µl with ddH2O. Digest for exact 3 hours at 37° C. Put digest on a gel and cut the DNA band (2900 bp) out. Purify the gel slice and use DNA for the next step.</li>
+
<li> <b>Digest plasmid BBa_K1150034 with Bbs1:</b> The restriction enzyme Bbs1 should always be stored at -80° C. Mix about 500 ng of BBa_K1150034 with 1 µl of Bbs1, appropriate amount of buffer and fill up to 50 µl with ddH2O. Digest for exactly 3 hours at 37° C. Load the digest on a gel and cut out the DNA band (2900 bp). Purify the gel slice and use DNA for the next step.</li>
-
<li> <b>Ligate crRNAs (step 1) into Bbs1 cut backbone:</b> The insert (crRNAs) should be ligated into the backbone in 3 molar insert excess. Therefore use this formular: Required Volume of Insert = 3 x Volume(Backbone) x length(Insert) x concentration (Backbone) / [ length(Backbone)  x concentration(Insert) ]. Use about 50 ng Bacbbone. The length of insert is always 30 basepairs. The length of the backbone is 2900 basepairs. You have to mix the appropriate amount of Backbone and the appropriate amount of Insert with 1 µl of T4 Ligase and 2 µl of 10xT4 ligase buffer. Then fill up to 20 µl with ddH2O. This mix should incubate for 30 minutes at room temperature.</li>
+
<li> <b>Ligate crRNAs (step 1) into Bbs1 cut backbone:</b> The insert (crRNAs) should be ligated into the backbone in 3 molar insert excess. Therefore use this formular: Required Volume of Insert = 3 x Volume(Backbone) x length(Insert) x concentration (Backbone) / [ length(Backbone)  x concentration(Insert) ]. Use about 50 ng of backbone. The length of insert is always 30 basepairs. The length of the backbone is 2900 basepairs. You have to mix the appropriate amount of Backbone and the appropriate amount of Insert with 1 µl of T4 ligase and 2 µl of 10xT4 ligase buffer. Then fill up to 20 µl with ddH2O. This mix should be incubated for 30 minutes at room temperature.</li>
-
<li> <b>Transform</b> 3-5 µl of the mix following standard protocol. Pick clones, miniprep the plasmids and sequence it with pSB1C3 reverse sequencing primer (sequence: CGCCTTTGAGTGAGCTGATACCGC).</li>
+
<li> <b>Transform</b> 3-5 µl of the mix following <a id="link" href="https://2013.igem.org/Team:Freiburg/protocols#Transformation">standard protocol</a>. Pick clones, miniprep the plasmids and sequence it with pSB1C3 reverse sequencing primer (sequence: CGCCTTTGAGTGAGCTGATACCGC).</li>
</ol>
</ol>
Line 1,585: Line 1,681:
<ol>
<ol>
-
<li> <b>Digest first crRNA plasmid</b> with XXX and XXX in order to linearize it. Both enzymes cut in the suffix. Using the <a id="link" href="http://parts.igem.org/Help:Assembly/3A_Assembly">BioBrick Assembly method</a>, it is possible to assemble multiple crRNA sequences in one plasmid. Therefore mix about 500 ng Backbone with 1 µl Enzyme 1 and 1 µl Enzyme 2, add an appropriate amount of compatible buffer and fill up to approximate 30-50 µl. Incubate mix at 37° C for 2 hours. </li>
+
<li> <b>First of all digest crRNA plasmid</b> with PstI and SpeI in order to linearize it. Both enzymes cut in the suffix. Using the <a id="link" href="http://parts.igem.org/Help:Assembly/3A_Assembly">BioBrick Assembly method</a>, it is possible to assemble multiple crRNA sequences into one plasmid. Therefore mix about 500 ng Backbone with 1 µl enzyme 1 and 1 µl enzyme 2, add an appropriate amount of compatible buffer and fill up to 30-50 µl. Incubate mix at 37° C for 2 hours. </li>
-
<li> <b>Digest second crRNA plasmid</b> with XXX and XXX. Using the <a id="link" href="http://parts.igem.org/Help:Assembly/3A_Assembly">BioBrick Assembly method</a>, this is your insert (procedure see above).</li>
+
<li> <b>Secondly digest crRNA plasmid</b> with PstI and XbaI. Using the <a id="link" href="http://parts.igem.org/Help:Assembly/3A_Assembly">BioBrick Assembly method</a>, this is your insert (procedure see above).</li>
-
<li>  Put digests on a gel and cut the DNA bands out (Backbone 2900 bp, Insert 870 bp). Purify the gel slice and use DNA for the next step.</li>
+
<li>  Load digests on a gel and cut out the DNA bands (Backbone 2900 bp, Insert 870 bp). Purify the gel slice and use DNA for the next step.</li>
<li> <b>Ligate</b> the insert in 3 molar excess into the backbone (formular see paragraph above).</li>
<li> <b>Ligate</b> the insert in 3 molar excess into the backbone (formular see paragraph above).</li>
-
<li> <b>Transform</b> 3-5 µl of the mix following standard protocol. Pick clones, miniprep the plasmids and sequence it with pSB1C3 forward sequencing primer (sequence: GAGTGCCACCTGACGTCTAAGAAAC) and pSB1C3 reverse sequencing primer (sequence: CGCCTTTGAGTGAGCTGATACCGC).</li>
+
<li> <b>Transform</b> 3-5 µl of the mix following <a id="link" href="https://2013.igem.org/Team:Freiburg/protocols#Transformation">standard protocol</a>. Pick clones, miniprep the plasmids and sequence it with pSB1C3 forward sequencing primer (sequence: GAGTGCCACCTGACGTCTAAGAAAC) and pSB1C3 reverse sequencing primer (sequence: CGCCTTTGAGTGAGCTGATACCGC).</li>
<li> These steps can be repeated various times. Using this method, you can engineer a plasmid with several crRNA targets!</li>
<li> These steps can be repeated various times. Using this method, you can engineer a plasmid with several crRNA targets!</li>
</ol>
</ol>
Line 1,598: Line 1,694:
<p>
<p>
-
For UVB light experiments transfect the following plasmid combinations on two different well plates. One plate will be illuminated with 311 nm for 24 hours. This is the UVB light induced plate. The other plate will be wrapped in aluminum foil. This is the no-induction control. See our <a id="link" href="https://2013.igem.org/Team:Freiburg/Project/induction#light">light induction project page</a>.
+
For UVB light experiments transfect the following plasmid combinations on two different well plates. One plate will be illuminated with 311 nm at 5 µE for 24 hours. This is the UVB light induced plate. The other plate will be wrapped in aluminum foil. This is the no-induction control. See our <a id="link" href="https://2013.igem.org/Team:Freiburg/Project/induction#light">light induction project page</a>.
</p>
</p>
Line 1,604: Line 1,700:
<li> <b>Transfect</b> BBa_K1150029, BBa_K1150031 (4 fold excess) with all desired crRNA plasmids (seperate crRNA plasmid and/or multiple crRNAs plasmid) </li>
<li> <b>Transfect</b> BBa_K1150029, BBa_K1150031 (4 fold excess) with all desired crRNA plasmids (seperate crRNA plasmid and/or multiple crRNAs plasmid) </li>
<li> <b>Off target control:</b> Transfect BBa_K1150029, BBa_K1150031 (4 fold excess)without any crRNA plasmid.</li>
<li> <b>Off target control:</b> Transfect BBa_K1150029, BBa_K1150031 (4 fold excess)without any crRNA plasmid.</li>
-
<li> <b>Target efficiency control:</b> Transfect BBa_K1150022 (4 fold excess) with the same crRNA Plasmids as in the first transfection.</li>
+
<li> <b>Target efficiency control:</b> Transfect BBa_K1150022 (4 fold excess) with the same crRNA plasmids as in the first transfection.</li>
</ol>
</ol>
 +
 +
<a href="https://static.igem.org/mediawiki/2013/6/6d/6_manual_pdf_freiburg.pdf"> <img src="https://static.igem.org/mediawiki/2013/9/9d/Printknopf_freiburg_13.png" width="100px" border="0"  style="margin-left:350px; margin-top: 50px;" alt=""> </a>
</div>
</div>
Line 1,614: Line 1,712:
</div>
</div>
 +
 +
 +
 +
 +
 +
 +
 +
<div id="check-19" class="toHide3" style="display:none">
<div id="check-19" class="toHide3" style="display:none">
Line 1,623: Line 1,729:
<p id="h1">
<p id="h1">
-
Non inducible uniCAS Histone Modificator for Repression (Cas9-G9a device)
+
Non inducible uniCAS Histone modifier for Repression (dCas9-G9a device)
</p>
</p>
<p>
<p>
-
You have chosen to repress a gene using a non inducible Cas9-G9a device. Therefore you have to order the following plasmids from the <a id="link" href="http://parts.igem.org/Main_Page"> iGEM parts registry </a>. After receiving our plasmids, you will have to clone your target sequence into our crRNA plasmid (protocol see below).
+
You have chosen to repress a gene using a non inducible dCas9-G9a device. Therefore you have to order the following plasmids from the <a id="link" href="http://parts.igem.org/Main_Page"> iGEM parts registry</a>. After receiving our plasmids, you will have to clone your target sequence into our crRNA plasmid (protocol see below).
</p>
</p>
Line 1,636: Line 1,742:
<th> Device </th>
<th> Device </th>
<th> Order </th>
<th> Order </th>
-
<th> GeneBank File </th>
+
<!--<th> GeneBank File </th>-->
</tr>
</tr>
<tr>
<tr>
<td> 1 </td>
<td> 1 </td>
<td> BBa_K1150017 </td>
<td> BBa_K1150017 </td>
-
<td> CMV-HA-NLS-Cas9-NLS-BGH </td>
+
<td> CMV:HA-NLS-dCas9-NLS:BGH </td>
<td> <a id="link" href="http://parts.igem.org/partsdb/get_part.cgi?part=BBa_K1150017"> order </a> </td>
<td> <a id="link" href="http://parts.igem.org/partsdb/get_part.cgi?part=BBa_K1150017"> order </a> </td>
-
<td> <a id="link" href=""> genebank </a> </td>
+
<!--<td> <a id="link" href=""> genebank </a> </td>-->
</tr>
</tr>
<tr>
<tr>
<td> 2 </td>
<td> 2 </td>
<td> BBa_K1150024 </td>
<td> BBa_K1150024 </td>
-
<td> CMV-HA-NLS-Cas9-L3-G9a-NLS-BGH </td>
+
<td> CMV:HA-NLS-dCas9-L3-G9a-NLS:BGH </td>
-
<td> <a id="link" href="http://parts.igem.org/partsdb/get_part.cgi?part=BBa_K1150022"> order </a> </td>
+
<td> <a id="link" href="http://parts.igem.org/partsdb/get_part.cgi?part=BBa_K1150024"> order </a> </td>
-
<td> <a id="link" href=""> genebank </a> </td>
+
<!--<td> <a id="link" href=""> genebank </a> </td>-->
</tr>
</tr>
<tr>
<tr>
<td> 3 </td>
<td> 3 </td>
<td> BBa_K1150034 </td>
<td> BBa_K1150034 </td>
-
<td> crRNA - plasmid </td>
+
<td> RNAimer - plasmid (crRNA - plasmid)</td>
<td> <a id="link" href="http://parts.igem.org/partsdb/get_part.cgi?part=BBa_K1150034"> order </a> </td>
<td> <a id="link" href="http://parts.igem.org/partsdb/get_part.cgi?part=BBa_K1150034"> order </a> </td>
-
<td> <a id="link" href=""> genebank </a> </td>
+
<!--<td> <a id="link" href=""> genebank </a> </td>-->
</tr>
</tr>
Line 1,666: Line 1,772:
<p>
<p>
Note: <br>
Note: <br>
-
All plasmids are optimized for expression in mammalian systems. The devices are also available containing an SV40 instead of an CMV promotor (have a look at our <a id="link" href="https://2013.igem.org/Team:Freiburg/parts"> parts </a> side). This system was tested mainly in CHO-K1, HEK-293T and HeLa cells.  
+
All plasmids are optimized for expression in mammalian systems. The devices are also available containing an SV40 instead of an CMV promotor (have a look at our <a id="link" href="https://2013.igem.org/Team:Freiburg/parts"> parts</a> side). This system was tested mainly in CHO-K1 and HEK-293T cells.  
</p>
</p>
Line 1,689: Line 1,795:
<ol>
<ol>
-
<li> <b>Oligo annealing:</b> Anneal forward and reverse oligo to get the desired crRNA. Therefore mix 10 µl of 100 µM forward Oligo, 10 µl of 100 µM reverse Oligo and 80 µl of ddH2O. Heat the solution to 95° C for 5 minutes. Then turn off the heat block and let the solution cool down.</li>
+
<li> <b>Oligo annealing:</b> Anneal forward and reverse oligos to get the desired crRNA. Therefore mix 10 µl of 100 µM forward Oligo, 10 µl of 100 µM reverse Oligo and 80 µl of ddH2O. Heat the solution to 95° C for 5 minutes. Then turn off the heat block and let the solution cool down.</li>
-
<li> <b>Digest plasmid BBa_K1150034 with Bbs1:</b> The restriction enzyme Bbs1 should always be stored at -80° C. Mix about 500 ng of BBa_K1150034 with 1 µl of Bbs1, appropriate amount of buffer and fill up to 50 µl with ddH2O. Digest for exact 3 hours at 37° C. Put digest on a gel and cut the DNA band (2900 bp) out. Purify the gel slice and use DNA for the next step.</li>
+
<li> <b>Digest plasmid BBa_K1150034 with Bbs1:</b> The restriction enzyme Bbs1 should always be stored at -80° C. Mix about 500 ng of BBa_K1150034 with 1 µl of Bbs1, appropriate amount of buffer and fill up to 50 µl with ddH2O. Digest for exactly 3 hours at 37° C. Load the digest on a gel and cut out the DNA band (2900 bp). Purify the gel slice and use DNA for the next step.</li>
-
<li> <b>Ligate crRNAs (step 1) into Bbs1 cut backbone:</b> The insert (crRNAs) should be ligated into the backbone in 3 molar insert excess. Therefore use this formular: Required Volume of Insert = 3 x Volume(Backbone) x length(Insert) x concentration (Backbone) / [ length(Backbone)  x concentration(Insert) ]. Use about 50 ng Bacbbone. The length of insert is always 30 basepairs. The length of the backbone is 2900 basepairs. You have to mix the appropriate amount of Backbone and the appropriate amount of Insert with 1 µl of T4 Ligase and 2 µl of 10xT4 ligase buffer. Then fill up to 20 µl with ddH2O. This mix should incubate for 30 minutes at room temperature.</li>
+
<li> <b>Ligate crRNAs (step 1) into Bbs1 cut backbone:</b> The insert (crRNAs) should be ligated into the backbone in 3 molar insert excess. Therefore use this formular: Required Volume of Insert = 3 x Volume(Backbone) x length(Insert) x concentration (Backbone) / [ length(Backbone)  x concentration(Insert) ]. Use about 50 ng of backbone. The length of insert is always 30 basepairs. The length of the backbone is 2900 basepairs. You have to mix the appropriate amount of Backbone and the appropriate amount of Insert with 1 µl of T4 ligase and 2 µl of 10xT4 ligase buffer. Then fill up to 20 µl with ddH2O. This mix should be incubated for 30 minutes at room temperature.</li>
-
<li> <b>Transform</b> 3-5 µl of the mix following standard protocol. Pick clones, miniprep the plasmids and sequence it with pSB1C3 reverse sequencing primer (sequence: CGCCTTTGAGTGAGCTGATACCGC).</li>
+
<li> <b>Transform</b> 3-5 µl of the mix following <a id="link" href="https://2013.igem.org/Team:Freiburg/protocols#Transformation">standard protocol</a>. Pick clones, miniprep the plasmids and sequence it with pSB1C3 reverse sequencing primer (sequence: CGCCTTTGAGTGAGCTGATACCGC).</li>
</ol>
</ol>
Line 1,709: Line 1,815:
<ol>
<ol>
-
<li> <b>Digest first crRNA plasmid</b> with XXX and XXX in order to linearize it. Both enzymes cut in the suffix. Using the <a id="link" href="http://parts.igem.org/Help:Assembly/3A_Assembly">BioBrick Assembly method</a>, it is possible to assemble multiple crRNA sequences in one plasmid. Therefore mix about 500 ng Backbone with 1 µl Enzyme 1 and 1 µl Enzyme 2, add an appropriate amount of compatible buffer and fill up to approximate 30-50 µl. Incubate mix at 37° C for 2 hours. </li>
+
<li> <b>First of all digest crRNA plasmid</b> with PstI and SpeI in order to linearize it. Both enzymes cut in the suffix. Using the <a id="link" href="http://parts.igem.org/Help:Assembly/3A_Assembly">BioBrick Assembly method</a>, it is possible to assemble multiple crRNA sequences into one plasmid. Therefore mix about 500 ng Backbone with 1 µl enzyme 1 and 1 µl enzyme 2, add an appropriate amount of compatible buffer and fill up to 30-50 µl. Incubate mix at 37° C for 2 hours. </li>
-
<li> <b>Digest second crRNA plasmid</b> with XXX and XXX. Using the <a id="link" href="http://parts.igem.org/Help:Assembly/3A_Assembly">BioBrick Assembly method</a>, this is your insert (procedure see above).</li>
+
<li> <b>Secondly digest crRNA plasmid</b> with PstI and XbaI. Using the <a id="link" href="http://parts.igem.org/Help:Assembly/3A_Assembly">BioBrick Assembly method</a>, this is your insert (procedure see above).</li>
-
<li>  Put digests on a gel and cut the DNA bands out (Backbone 2900 bp, Insert 870 bp). Purify the gel slice and use DNA for the next step.</li>
+
<li>  Load digests on a gel and cut out the DNA bands (Backbone 2900 bp, Insert 870 bp). Purify the gel slice and use DNA for the next step.</li>
<li> <b>Ligate</b> the insert in 3 molar excess into the backbone (formular see paragraph above).</li>
<li> <b>Ligate</b> the insert in 3 molar excess into the backbone (formular see paragraph above).</li>
-
<li> <b>Transform</b> 3-5 µl of the mix following standard protocol. Pick clones, miniprep the plasmids and sequence it with pSB1C3 forward sequencing primer (sequence: GAGTGCCACCTGACGTCTAAGAAAC) and pSB1C3 reverse sequencing primer (sequence: CGCCTTTGAGTGAGCTGATACCGC).</li>
+
<li> <b>Transform</b> 3-5 µl of the mix following <a id="link" href="https://2013.igem.org/Team:Freiburg/protocols#Transformation">standard protocol</a>. Pick clones, miniprep the plasmids and sequence it with pSB1C3 forward sequencing primer (sequence: GAGTGCCACCTGACGTCTAAGAAAC) and pSB1C3 reverse sequencing primer (sequence: CGCCTTTGAGTGAGCTGATACCGC).</li>
<li> These steps can be repeated various times. Using this method, you can engineer a plasmid with several crRNA targets!</li>
<li> These steps can be repeated various times. Using this method, you can engineer a plasmid with several crRNA targets!</li>
</ol>
</ol>
Line 1,723: Line 1,829:
<ol>
<ol>
<li> <b>Transfect</b> BBa_K1150024 with all desired crRNA plasmids (seperate crRNA plasmid and/or multiple crRNAs plasmid) </li>
<li> <b>Transfect</b> BBa_K1150024 with all desired crRNA plasmids (seperate crRNA plasmid and/or multiple crRNAs plasmid) </li>
-
<li> <b>Non-effector control:</b> Transfect the appropriate crRNA - plasmid togehter with BBa_K1150017 that has no effector.</li>
+
<li> <b>Non-effector control:</b> Transfect the appropriate crRNA - plasmid together with BBa_K1150017 that has no effector.</li>
<li> <b>Off target control:</b> Transfect BBa_K1150024 without any crRNA plasmid.</li>
<li> <b>Off target control:</b> Transfect BBa_K1150024 without any crRNA plasmid.</li>
</ol>
</ol>
 +
<a href="https://static.igem.org/mediawiki/2013/1/1a/7_manual_pdf_freiburg.pdf"> <img src="https://static.igem.org/mediawiki/2013/9/9d/Printknopf_freiburg_13.png" width="100px" border="0"  style="margin-left:350px; margin-top: 50px;" alt=""> </a>
</div>
</div>
Line 1,735: Line 1,842:
</div>
</div>
 +
 +
 +
 +
 +
 +
 +
 +
 +
<div id="check-20" class="toHide3" style="display:none">
<div id="check-20" class="toHide3" style="display:none">
Line 1,744: Line 1,860:
<p id="h1">
<p id="h1">
-
Red light inducible uniCAS Histone Modificator for Repression (Cas9-PIF6 & PhyB-G9a devices)
+
Red light inducible uniCAS Histone modifier for Repression (dCas9-PIF6 & PhyB-G9a devices)
</p>
</p>
<p>
<p>
-
You have chosen to repress a gene using a non inducible Cas9-KRAB device. Therefore you have to order the following plasmids from the <a id="link" href="http://parts.igem.org/Main_Page"> iGEM parts registry </a>. After receiving our plasmids, you will have to clone your target sequence into our crRNA plasmid (protocol see below).
+
You have chosen to repress a gene using a non inducible dCas9-KRAB device. Therefore you have to order the following plasmids from the <a id="link" href="http://parts.igem.org/Main_Page"> iGEM parts registry</a>. After receiving our plasmids, you will have to clone your target sequence into our crRNA plasmid (protocol see below).
</p>
</p>
Line 1,757: Line 1,873:
<th> Device </th>
<th> Device </th>
<th> Order </th>
<th> Order </th>
-
<th> GeneBank File </th>
+
<!--<th> GeneBank File </th>-->
</tr>
</tr>
<tr>
<tr>
<td> 1 </td>
<td> 1 </td>
<td> BBa_K1150025 </td>
<td> BBa_K1150025 </td>
-
<td> CMV-HA-NLS-Cas9-L3-PIF6-NLS-BGH </td>
+
<td> CMV:HA-NLS-dCas9-L3-PIF6-NLS:BGH </td>
<td> <a id="link" href="http://parts.igem.org/partsdb/get_part.cgi?part=BBa_K1150025"> order </a> </td>
<td> <a id="link" href="http://parts.igem.org/partsdb/get_part.cgi?part=BBa_K1150025"> order </a> </td>
-
<td> <a id="link" href=""> genebank </a> </td>
+
<!--<td> <a id="link" href=""> genebank </a> </td>-->
</tr>
</tr>
<tr>
<tr>
<td> 2 </td>
<td> 2 </td>
<td> BBa_K1150028 </td>
<td> BBa_K1150028 </td>
-
<td> CMV-NLS-PhyB-L3-G9a-NLS-BGH </td>
+
<td> CMV:NLS-PhyB-L3-G9a-NLS:BGH </td>
<td> <a id="link" href="http://parts.igem.org/partsdb/get_part.cgi?part=BBa_K1150028"> order </a> </td>
<td> <a id="link" href="http://parts.igem.org/partsdb/get_part.cgi?part=BBa_K1150028"> order </a> </td>
-
<td> <a id="link" href=""> genebank </a> </td>
+
<!--<td> <a id="link" href=""> genebank </a> </td>-->
</tr>
</tr>
<tr>
<tr>
<td> 3 </td>
<td> 3 </td>
<td> BBa_K1150024 </td>
<td> BBa_K1150024 </td>
-
<td> CMV-HA-NLS-Cas9-L3-G9a-NLS-BGH </td>
+
<td> CMV:HA-NLS-dCas9-L3-G9a-NLS:BGH </td>
-
<td> <a id="link" href="http://parts.igem.org/partsdb/get_part.cgi?part=BBa_K1150022"> order </a> </td>
+
<td> <a id="link" href="http://parts.igem.org/partsdb/get_part.cgi?part=BBa_K1150024"> order </a> </td>
-
<td> <a id="link" href=""> genebank </a> </td>
+
<!--<td> <a id="link" href=""> genebank </a> </td>-->
</tr>
</tr>
<tr>
<tr>
<td> 4 </td>
<td> 4 </td>
<td> BBa_K1150034 </td>
<td> BBa_K1150034 </td>
-
<td> crRNA - plasmid </td>
+
<td> RNAimer - plasmid (crRNA - plasmid)</td>
<td> <a id="link" href="http://parts.igem.org/partsdb/get_part.cgi?part=BBa_K1150034"> order </a> </td>
<td> <a id="link" href="http://parts.igem.org/partsdb/get_part.cgi?part=BBa_K1150034"> order </a> </td>
-
<td> <a id="link" href=""> genebank </a> </td>
+
<!--<td> <a id="link" href=""> genebank </a> </td>-->
</tr>
</tr>
Line 1,795: Line 1,911:
<p>
<p>
Note: <br>
Note: <br>
-
All plasmids are optimized for expression in mammalian systems. The devices are also available containing an SV40 instead of an CMV promotor (have a look at our <a id="link" href="https://2013.igem.org/Team:Freiburg/parts"> parts </a> side). This system was tested mainly in CHO-K1, HEK-293T and HeLa cells.  
+
All plasmids are optimized for expression in mammalian systems. The devices are also available containing an SV40 instead of an CMV promotor (have a look at our <a id="link" href="https://2013.igem.org/Team:Freiburg/parts"> parts</a> side). This system was tested mainly in CHO-K1 and HEK-293T cells.  
</p>
</p>
Line 1,818: Line 1,934:
<ol>
<ol>
-
<li> <b>Oligo annealing:</b> Anneal forward and reverse oligo to get the desired crRNA. Therefore mix 10 µl of 100 µM forward Oligo, 10 µl of 100 µM reverse Oligo and 80 µl of ddH2O. Heat the solution to 95° C for 5 minutes. Then turn off the heat block and let the solution cool down.</li>
+
<li> <b>Oligo annealing:</b> Anneal forward and reverse oligos to get the desired crRNA. Therefore mix 10 µl of 100 µM forward Oligo, 10 µl of 100 µM reverse Oligo and 80 µl of ddH2O. Heat the solution to 95° C for 5 minutes. Then turn off the heat block and let the solution cool down.</li>
-
<li> <b>Digest plasmid BBa_K1150034 with Bbs1:</b> The restriction enzyme Bbs1 should always be stored at -80° C. Mix about 500 ng of BBa_K1150034 with 1 µl of Bbs1, appropriate amount of buffer and fill up to 50 µl with ddH2O. Digest for exact 3 hours at 37° C. Put digest on a gel and cut the DNA band (2900 bp) out. Purify the gel slice and use DNA for the next step.</li>
+
<li> <b>Digest plasmid BBa_K1150034 with Bbs1:</b> The restriction enzyme Bbs1 should always be stored at -80° C. Mix about 500 ng of BBa_K1150034 with 1 µl of Bbs1, appropriate amount of buffer and fill up to 50 µl with ddH2O. Digest for exactly 3 hours at 37° C. Load the digest on a gel and cut out the DNA band (2900 bp). Purify the gel slice and use DNA for the next step.</li>
-
<li> <b>Ligate crRNAs (step 1) into Bbs1 cut backbone:</b> The insert (crRNAs) should be ligated into the backbone in 3 molar insert excess. Therefore use this formular: Required Volume of Insert = 3 x Volume(Backbone) x length(Insert) x concentration (Backbone) / [ length(Backbone)  x concentration(Insert) ]. Use about 50 ng Bacbbone. The length of insert is always 30 basepairs. The length of the backbone is 2900 basepairs. You have to mix the appropriate amount of Backbone and the appropriate amount of Insert with 1 µl of T4 Ligase and 2 µl of 10xT4 ligase buffer. Then fill up to 20 µl with ddH2O. This mix should incubate for 30 minutes at room temperature.</li>
+
<li> <b>Ligate crRNAs (step 1) into Bbs1 cut backbone:</b> The insert (crRNAs) should be ligated into the backbone in 3 molar insert excess. Therefore use this formular: Required Volume of Insert = 3 x Volume(Backbone) x length(Insert) x concentration (Backbone) / [ length(Backbone)  x concentration(Insert) ]. Use about 50 ng of backbone. The length of insert is always 30 basepairs. The length of the backbone is 2900 basepairs. You have to mix the appropriate amount of Backbone and the appropriate amount of Insert with 1 µl of T4 ligase and 2 µl of 10xT4 ligase buffer. Then fill up to 20 µl with ddH2O. This mix should be incubated for 30 minutes at room temperature.</li>
-
<li> <b>Transform</b> 3-5 µl of the mix following standard protocol. Pick clones, miniprep the plasmids and sequence it with pSB1C3 reverse sequencing primer (sequence: CGCCTTTGAGTGAGCTGATACCGC).</li>
+
<li> <b>Transform</b> 3-5 µl of the mix following <a id="link" href="https://2013.igem.org/Team:Freiburg/protocols#Transformation">standard protocol</a>. Pick clones, miniprep the plasmids and sequence it with pSB1C3 reverse sequencing primer (sequence: CGCCTTTGAGTGAGCTGATACCGC).</li>
</ol>
</ol>
Line 1,838: Line 1,954:
<ol>
<ol>
-
<li> <b>Digest first crRNA plasmid</b> with XXX and XXX in order to linearize it. Both enzymes cut in the suffix. Using the <a id="link" href="http://parts.igem.org/Help:Assembly/3A_Assembly">BioBrick Assembly method</a>, it is possible to assemble multiple crRNA sequences in one plasmid. Therefore mix about 500 ng Backbone with 1 µl Enzyme 1 and 1 µl Enzyme 2, add an appropriate amount of compatible buffer and fill up to approximate 30-50 µl. Incubate mix at 37° C for 2 hours. </li>
+
<li> <b>First of all digest crRNA plasmid</b> with PstI and SpeI in order to linearize it. Both enzymes cut in the suffix. Using the <a id="link" href="http://parts.igem.org/Help:Assembly/3A_Assembly">BioBrick Assembly method</a>, it is possible to assemble multiple crRNA sequences into one plasmid. Therefore mix about 500 ng Backbone with 1 µl enzyme 1 and 1 µl enzyme 2, add an appropriate amount of compatible buffer and fill up to 30-50 µl. Incubate mix at 37° C for 2 hours. </li>
-
<li> <b>Digest second crRNA plasmid</b> with XXX and XXX. Using the <a id="link" href="http://parts.igem.org/Help:Assembly/3A_Assembly">BioBrick Assembly method</a>, this is your insert (procedure see above).</li>
+
<li> <b>Secondly digest crRNA plasmid</b> with PstI and XbaI. Using the <a id="link" href="http://parts.igem.org/Help:Assembly/3A_Assembly">BioBrick Assembly method</a>, this is your insert (procedure see above).</li>
-
<li>  Put digests on a gel and cut the DNA bands out (Backbone 2900 bp, Insert 870 bp). Purify the gel slice and use DNA for the next step.</li>
+
<li>  Load digests on a gel and cut out the DNA bands out (Backbone 2900 bp, Insert 870 bp). Purify the gel slice and use DNA for the next step.</li>
<li> <b>Ligate</b> the insert in 3 molar excess into the backbone (formular see paragraph above).</li>
<li> <b>Ligate</b> the insert in 3 molar excess into the backbone (formular see paragraph above).</li>
-
<li> <b>Transform</b> 3-5 µl of the mix following standard protocol. Pick clones, miniprep the plasmids and sequence it with pSB1C3 forward sequencing primer (sequence: GAGTGCCACCTGACGTCTAAGAAAC) and pSB1C3 reverse sequencing primer (sequence: CGCCTTTGAGTGAGCTGATACCGC).</li>
+
<li> <b>Transform</b> 3-5 µl of the mix following <a id="link" href="https://2013.igem.org/Team:Freiburg/protocols#Transformation">standard protocol</a>. Pick clones, miniprep the plasmids and sequence it with pSB1C3 forward sequencing primer (sequence: GAGTGCCACCTGACGTCTAAGAAAC) and pSB1C3 reverse sequencing primer (sequence: CGCCTTTGAGTGAGCTGATACCGC).</li>
<li> These steps can be repeated various times. Using this method, you can engineer a plasmid with several crRNA targets!</li>
<li> These steps can be repeated various times. Using this method, you can engineer a plasmid with several crRNA targets!</li>
</ol>
</ol>
Line 1,851: Line 1,967:
<p>
<p>
-
For red light experiments transfect the following plasmid combinations on two different well plates. One plate will be illuminated with 660 nm for 48 hours. This is the red light induced plate. The other plate will be illuminated with 740 nm. This is the no-induction control. Before illuminating you have to put PCB in the wells. See our <a id="link" href="https://2013.igem.org/Team:Freiburg/Project/induction#light">light induction project page</a>.
+
For red light experiments transfect the following plasmid combinations on two different well plates. One plate will be illuminated with 660 nm for 48 hours. This is the red light induced plate. The other plate will be illuminated with 740 nm. This is the no-induction control. If not working in plant systems add 15µM of PCB prior to illumination and incubate for at least 1h. See our <a id="link" href="https://2013.igem.org/Team:Freiburg/Project/induction#light">light induction project page</a>.
</p>
</p>
Line 1,857: Line 1,973:
<li> <b>Transfect</b> BBa_K1150025, BBa_K1150028 with all desired crRNA plasmids (seperate crRNA plasmid and/or multiple crRNAs plasmid) </li>
<li> <b>Transfect</b> BBa_K1150025, BBa_K1150028 with all desired crRNA plasmids (seperate crRNA plasmid and/or multiple crRNAs plasmid) </li>
<li> <b>Off target control:</b> Transfect BBa_K1150025, BBa_K1150028 without any crRNA plasmid.</li>
<li> <b>Off target control:</b> Transfect BBa_K1150025, BBa_K1150028 without any crRNA plasmid.</li>
-
<li> <b>Target efficiency control:</b> Transfect BBa_K1150024 with the same crRNA Plasmids as in the first transfection.</li>
+
<li> <b>Target efficiency control:</b> Transfect BBa_K1150024 with the same crRNA plasmids as in the first transfection.</li>
</ol>
</ol>
 +
<a href="https://static.igem.org/mediawiki/2013/3/3f/8_manual_pdf_freiburg.pdf"> <img src="https://static.igem.org/mediawiki/2013/9/9d/Printknopf_freiburg_13.png" width="100px" border="0"  style="margin-left:350px; margin-top: 50px;" alt=""> </a>
</div>
</div>
Line 1,867: Line 1,984:
</div>
</div>
 +
 +
 +
 +
 +
 +
 +
 +
 +
<div id="check-21" class="toHide3" style="display:none">
<div id="check-21" class="toHide3" style="display:none">
Line 1,880: Line 2,006:
<p id="h1">
<p id="h1">
-
UVB light inducible uniCAS Histone Modificator for Repression (Cas9-UVR8 & COP1-G9a devices)
+
UVB light inducible uniCAS Histone modifier for Repression (dCas9-UVR8 & COP1-G9a devices)
</p>
</p>
<p>
<p>
-
You have chosen to repress a gene using a UVB light inducible Cas9-UVR8 & COP1-G9a device. Therefore you have to order the following plasmids from the <a id="link" href="http://parts.igem.org/Main_Page"> iGEM parts registry </a>. After receiving our plasmids, you will have to clone your target sequence into our crRNA plasmid (protocol see below).
+
You have chosen to repress a gene using a UVB light inducible dCas9-UVR8 & COP1-G9a device. Therefore you have to order the following plasmids from the <a id="link" href="http://parts.igem.org/Main_Page"> iGEM parts registry </a>. After receiving our plasmids, you will have to clone your target sequence into our crRNA plasmid (protocol see below).
</p>
</p>
Line 1,893: Line 2,019:
<th> Device </th>
<th> Device </th>
<th> Order </th>
<th> Order </th>
-
<th> GeneBank File </th>
+
<!--<th> GeneBank File </th>-->
</tr>
</tr>
<tr>
<tr>
<td> 1 </td>
<td> 1 </td>
<td> BBa_K1150029 </td>
<td> BBa_K1150029 </td>
-
<td> CMV-HA-NLS-Cas9-L3-UVR8-NLS-BGH </td>
+
<td> CMV:HA-NLS-dCas9-L3-UVR8-NLS:BGH </td>
<td> <a id="link" href="http://parts.igem.org/partsdb/get_part.cgi?part=BBa_K1150029"> order </a> </td>
<td> <a id="link" href="http://parts.igem.org/partsdb/get_part.cgi?part=BBa_K1150029"> order </a> </td>
-
<td> <a id="link" href=""> genebank </a> </td>
+
<!--<td> <a id="link" href=""> genebank </a> </td>
</tr>
</tr>
<tr>
<tr>
<td> 2 </td>
<td> 2 </td>
<td> BBa_K1150031 </td>
<td> BBa_K1150031 </td>
-
<td> CMV-NLS-COP1-L3-G9a-NLS-BGH </td>
+
<td> CMV:NLS-COP1-L3-G9a-NLS:BGH </td>
<td> <a id="link" href="http://parts.igem.org/partsdb/get_part.cgi?part=BBa_K1150031"> order </a> </td>
<td> <a id="link" href="http://parts.igem.org/partsdb/get_part.cgi?part=BBa_K1150031"> order </a> </td>
-
<td> <a id="link" href=""> genebank </a> </td>
+
<!--<td> <a id="link" href=""> genebank </a> </td>-->
</tr>
</tr>
<tr>
<tr>
<td> 3 </td>
<td> 3 </td>
<td> BBa_K1150022 </td>
<td> BBa_K1150022 </td>
-
<td> CMV-HA-NLS-Cas9-L3-G9a-NLS-BGH </td>
+
<td> CMV:HA-NLS-dCas9-L3-G9a-NLS:BGH </td>
<td> <a id="link" href="http://parts.igem.org/partsdb/get_part.cgi?part=BBa_K1150022"> order </a> </td>
<td> <a id="link" href="http://parts.igem.org/partsdb/get_part.cgi?part=BBa_K1150022"> order </a> </td>
-
<td> <a id="link" href=""> genebank </a> </td>
+
<!--<td> <a id="link" href=""> genebank </a> </td>-->
</tr>
</tr>
<tr>
<tr>
<td> 4 </td>
<td> 4 </td>
<td> BBa_K1150034 </td>
<td> BBa_K1150034 </td>
-
<td> crRNA - plasmid </td>
+
<td> RNAimer - plasmid (crRNA - plasmid)</td>
<td> <a id="link" href="http://parts.igem.org/partsdb/get_part.cgi?part=BBa_K1150034"> order </a> </td>
<td> <a id="link" href="http://parts.igem.org/partsdb/get_part.cgi?part=BBa_K1150034"> order </a> </td>
-
<td> <a id="link" href=""> genebank </a> </td>
+
<!--<td> <a id="link" href=""> genebank </a> </td>-->
</tr>
</tr>
Line 1,931: Line 2,057:
<p>
<p>
Note: <br>
Note: <br>
-
All plasmids are optimized for expression in mammalian systems. The devices are also available containing an SV40 instead of an CMV promotor (have a look at our <a id="link" href="https://2013.igem.org/Team:Freiburg/parts"> parts </a> side). This system was tested mainly in CHO-K1, HEK-293T and HeLa cells.  
+
All plasmids are optimized for expression in mammalian systems. The devices are also available containing an SV40 instead of an CMV promotor (have a look at our <a id="link" href="https://2013.igem.org/Team:Freiburg/parts"> parts</a> side). This system was tested mainly in CHO-K1 and HEK-293T cells.  
</p>
</p>
Line 1,954: Line 2,080:
<ol>
<ol>
-
<li> <b>Oligo annealing:</b> Anneal forward and reverse oligo to get the desired crRNA. Therefore mix 10 µl of 100 µM forward Oligo, 10 µl of 100 µM reverse Oligo and 80 µl of ddH2O. Heat the solution to 95° C for 5 minutes. Then turn off the heat block and let the solution cool down.</li>
+
<li> <b>Oligo annealing:</b> Anneal forward and reverse oligos to get the desired crRNA. Therefore mix 10 µl of 100 µM forward Oligo, 10 µl of 100 µM reverse Oligo and 80 µl of ddH2O. Heat the solution to 95° C for 5 minutes. Then turn off the heat block and let the solution cool down.</li>
-
<li> <b>Digest plasmid BBa_K1150034 with Bbs1:</b> The restriction enzyme Bbs1 should always be stored at -80° C. Mix about 500 ng of BBa_K1150034 with 1 µl of Bbs1, appropriate amount of buffer and fill up to 50 µl with ddH2O. Digest for exact 3 hours at 37° C. Put digest on a gel and cut the DNA band (2900 bp) out. Purify the gel slice and use DNA for the next step.</li>
+
<li> <b>Digest plasmid BBa_K1150034 with Bbs1:</b> The restriction enzyme Bbs1 should always be stored at -80° C. Mix about 500 ng of BBa_K1150034 with 1 µl of Bbs1, appropriate amount of buffer and fill up to 50 µl with ddH2O. Digest for exactly 3 hours at 37° C. Load the digest on a gel and cut out the DNA band (2900 bp). Purify the gel slice and use DNA for the next step.</li>
-
<li> <b>Ligate crRNAs (step 1) into Bbs1 cut backbone:</b> The insert (crRNAs) should be ligated into the backbone in 3 molar insert excess. Therefore use this formular: Required Volume of Insert = 3 x Volume(Backbone) x length(Insert) x concentration (Backbone) / [ length(Backbone)  x concentration(Insert) ]. Use about 50 ng Bacbbone. The length of insert is always 30 basepairs. The length of the backbone is 2900 basepairs. You have to mix the appropriate amount of Backbone and the appropriate amount of Insert with 1 µl of T4 Ligase and 2 µl of 10xT4 ligase buffer. Then fill up to 20 µl with ddH2O. This mix should incubate for 30 minutes at room temperature.</li>
+
<li> <b>Ligate crRNAs (step 1) into Bbs1 cut backbone:</b> The insert (crRNAs) should be ligated into the backbone in 3 molar insert excess. Therefore use this formular: Required Volume of Insert = 3 x Volume(Backbone) x length(Insert) x concentration (Backbone) / [ length(Backbone)  x concentration(Insert) ]. Use about 50 ng of backbone. The length of insert is always 30 basepairs. The length of the backbone is 2900 basepairs. You have to mix the appropriate amount of Backbone and the appropriate amount of Insert with 1 µl of T4 ligase and 2 µl of 10xT4 ligase buffer. Then fill up to 20 µl with ddH2O. This mix should be incubated for 30 minutes at room temperature.</li>
-
<li> <b>Transform</b> 3-5 µl of the mix following standard protocol. Pick clones, miniprep the plasmids and sequence it with pSB1C3 reverse sequencing primer (sequence: CGCCTTTGAGTGAGCTGATACCGC).</li>
+
<li> <b>Transform</b> 3-5 µl of the mix following <a id="link" href="https://2013.igem.org/Team:Freiburg/protocols#Transformation">standard protocol</a>. Pick clones, miniprep the plasmids and sequence it with pSB1C3 reverse sequencing primer (sequence: CGCCTTTGAGTGAGCTGATACCGC).</li>
</ol>
</ol>
Line 1,974: Line 2,100:
<ol>
<ol>
-
<li> <b>Digest first crRNA plasmid</b> with XXX and XXX in order to linearize it. Both enzymes cut in the suffix. Using the <a id="link" href="http://parts.igem.org/Help:Assembly/3A_Assembly">BioBrick Assembly method</a>, it is possible to assemble multiple crRNA sequences in one plasmid. Therefore mix about 500 ng Backbone with 1 µl Enzyme 1 and 1 µl Enzyme 2, add an appropriate amount of compatible buffer and fill up to approximate 30-50 µl. Incubate mix at 37° C for 2 hours. </li>
+
<li> <b>First of all digest crRNA plasmid</b> with PstI and SpeI in order to linearize it. Both enzymes cut in the suffix. Using the <a id="link" href="http://parts.igem.org/Help:Assembly/3A_Assembly">BioBrick Assembly method</a>, it is possible to assemble multiple crRNA sequences into one plasmid. Therefore mix about 500 ng Backbone with 1 µl enzyme 1 and 1 µl enzyme 2, add an appropriate amount of compatible buffer and fill up to 30-50 µl. Incubate mix at 37° C for 2 hours. </li>
-
<li> <b>Digest second crRNA plasmid</b> with XXX and XXX. Using the <a id="link" href="http://parts.igem.org/Help:Assembly/3A_Assembly">BioBrick Assembly method</a>, this is your insert (procedure see above).</li>
+
<li> <b>Secondly digest crRNA plasmid</b> with PstI and XbaI. Using the <a id="link" href="http://parts.igem.org/Help:Assembly/3A_Assembly">BioBrick Assembly method</a>, this is your insert (procedure see above).</li>
-
<li>  Put digests on a gel and cut the DNA bands out (Backbone 2900 bp, Insert 870 bp). Purify the gel slice and use DNA for the next step.</li>
+
<li>  Load digests on a gel and cut out the DNA bands (Backbone 2900 bp, Insert 870 bp). Purify the gel slice and use DNA for the next step.</li>
<li> <b>Ligate</b> the insert in 3 molar excess into the backbone (formular see paragraph above).</li>
<li> <b>Ligate</b> the insert in 3 molar excess into the backbone (formular see paragraph above).</li>
-
<li> <b>Transform</b> 3-5 µl of the mix following standard protocol. Pick clones, miniprep the plasmids and sequence it with pSB1C3 forward sequencing primer (sequence: GAGTGCCACCTGACGTCTAAGAAAC) and pSB1C3 reverse sequencing primer (sequence: CGCCTTTGAGTGAGCTGATACCGC).</li>
+
<li> <b>Transform</b> 3-5 µl of the mix following <a id="link" href="https://2013.igem.org/Team:Freiburg/protocols#Transformation">standard protocol</a>. Pick clones, miniprep the plasmids and sequence it with pSB1C3 forward sequencing primer (sequence: GAGTGCCACCTGACGTCTAAGAAAC) and pSB1C3 reverse sequencing primer (sequence: CGCCTTTGAGTGAGCTGATACCGC).</li>
<li> These steps can be repeated various times. Using this method, you can engineer a plasmid with several crRNA targets!</li>
<li> These steps can be repeated various times. Using this method, you can engineer a plasmid with several crRNA targets!</li>
</ol>
</ol>
Line 1,987: Line 2,113:
<p>
<p>
-
For UVB light experiments transfect the following plasmid combinations on two different well plates. One plate will be illuminated with 311 nm for 24 hours. This is the UVB light induced plate. The other plate will be wrapped in aluminum foil. This is the no-induction control. See our <a id="link" href="https://2013.igem.org/Team:Freiburg/Project/induction#light">light induction project page</a>.
+
For UVB light experiments transfect the following plasmid combinations on two different well plates. One plate will be illuminated with 311 nm at 5 µE for 24 hours. This is the UVB light induced plate. The other plate will be wrapped in aluminum foil. This is the no-induction control. See our <a id="link" href="https://2013.igem.org/Team:Freiburg/Project/induction#light">light induction project page</a>.
</p>
</p>
Line 1,993: Line 2,119:
<li> <b>Transfect</b> BBa_K1150029, BBa_K1150032 with all desired crRNA plasmids (seperate crRNA plasmid and/or multiple crRNAs plasmid) </li>
<li> <b>Transfect</b> BBa_K1150029, BBa_K1150032 with all desired crRNA plasmids (seperate crRNA plasmid and/or multiple crRNAs plasmid) </li>
<li> <b>Off target control:</b> Transfect BBa_K1150029, BBa_K1150032 (4 fold excess)without any crRNA plasmid.</li>
<li> <b>Off target control:</b> Transfect BBa_K1150029, BBa_K1150032 (4 fold excess)without any crRNA plasmid.</li>
-
<li> <b>Target efficiency control:</b> Transfect BBa_K1150024 with the same crRNA Plasmids as in the first transfection.</li>
+
<li> <b>Target efficiency control:</b> Transfect BBa_K1150024 with the same crRNA plasmids as in the first transfection.</li>
</ol>
</ol>
 +
<a href="https://static.igem.org/mediawiki/2013/3/32/9_manual_pdf_freiburg.pdf"> <img src="https://static.igem.org/mediawiki/2013/9/9d/Printknopf_freiburg_13.png" width="100px" border="0"  style="margin-left:350px; margin-top: 50px;" alt=""> </a>
</div>
</div>

Latest revision as of 00:59, 29 October 2013


The uniCAS toolkit - Customize your experiments!

You want to have a maximum of activation or repression of your genes by a minimal effort? Then you have to use the uniCAS toolkit provided by the iGEM team Freiburg 2013. All you have to do is:
  • Click yourself through the routine below
  • Order the appropriate plasmids and oligos
  • Conduct a minimal of cloning
  • Start your personalized experiment
By the end of the routine you will get a personal manual. All you need to do is using the uniCAS toolkit and follow the instructions. Best of all: The uniCAS toolkit is all open source and in iGEM standard!