Team:UFMG Brazil/lab/results
From 2013.igem.org
(Difference between revisions)
Italodovalle (Talk | contribs) (→Discussion and Conclusions) |
Italodovalle (Talk | contribs) (→Discussion and Conclusions) |
||
(2 intermediate revisions not shown) | |||
Line 44: | Line 44: | ||
We have constructed the composite RCNA+YFP to detect IMA (ischemia modified albumin) in the serum of patients with cardiac risk. These patients present more IMA than normal individuals. | We have constructed the composite RCNA+YFP to detect IMA (ischemia modified albumin) in the serum of patients with cardiac risk. These patients present more IMA than normal individuals. | ||
- | To prove that our construct works, we made some tests with transformed ''E. coli'' XL1-Blue. We added different concentrations of cobaltous chloride to bacterial cultures and measured their fluorescence (excitation: 514nm; emission: 527 nm) and absorbance (600 nm) for a certain period. The results (Figures 6 | + | To prove that our construct works, we made some tests with transformed ''E. coli'' XL1-Blue. We added different concentrations of cobaltous chloride to bacterial cultures and measured their fluorescence (excitation: 514nm; emission: 527 nm) and absorbance (600 nm) for a certain period. The results for fluorescence(Figures 6) show a peak of fluorescence which can be seen 1 hour after 25 µM treatment, and another peak after 4 hours of 75µM treatment. However,normalizing the data according absorbance measures we can see only a peak after 4 hours of 75µM treatment. |
- | [[File:ima_fluo_barra.jpg|700px|thumb|center|'''Figure 6: Fluorimetric reads of cultures ''of E. coli'' XL1-Blue carrying the plasmid PSB1A3_RCNA+ YFP, after treatment with different concentrations of cobalt.''' Bacteria were treated with 0, 25, 50, 75, 100, 125 or 150 µM of cobalt chloride. After that, fluorescence was read hourly, until 4 hours, and then it was read 8 and 24 hours after treatment. A peak of fluorescence can be seen 1 hour after 25 µM treatment, and another peak after 4 hours of 75 µM treatment.]] | + | <!--Isso não está sendo mostrado--> |
+ | <!--[[File:ima_fluo_barra.jpg|700px|thumb|center|'''Figure 6: Fluorimetric reads of cultures ''of E. coli'' XL1-Blue carrying the plasmid PSB1A3_RCNA+ YFP, after treatment with different concentrations of cobalt.''' Bacteria were treated with 0, 25, 50, 75, 100, 125 or 150 µM of cobalt chloride. After that, fluorescence was read hourly, until 4 hours, and then it was read 8 and 24 hours after treatment. A peak of fluorescence can be seen 1 hour after 25 µM treatment, and another peak after 4 hours of 75 µM treatment.]]--> | ||
- | [[File:Ima fluo curva.jpg|700px|thumb|center|'''Figure | + | [[File:Ima fluo curva.jpg|700px|thumb|center|'''Figure 6: Fluorimetric reads of cultures of ''E. coli'' XL1-Blue carrying the plasmid PSB1A3_RCNA+ YFP, after treatment with different concentrations of cobalt.''' This result is the same as the one shown in figure 6, but here the focus is at the points where peaks appeared.]] |
Line 90: | Line 91: | ||
- | The maximum of fluorescence reached in the E. coli XL1-Blue carrying the plasmid PSB1A3_RCNA+ YFP occurred 4 hours after the treatment with | + | The maximum of fluorescence reached in the E. coli XL1-Blue carrying the plasmid PSB1A3_RCNA+ YFP occurred 4 hours after the treatment with 75µM of cobalt, as showed in the figure 8. Even before eight hours after the treatment we can see that the fluorescence is still higher than the other concentrations of test. |
- | It is noteworthy the importance of data normalization according the absorbance measure, because different amounts of bacteria will result in different fluorescence values (Figure 6), but when we see the measure of fluorescence per measure of absorbance we conclude that the best concentration of cobalt for the sensor activation is 75 | + | It is noteworthy the importance of data normalization according the absorbance measure, because different amounts of bacteria will result in different fluorescence values (Figure 6), but when we see the measure of fluorescence per measure of absorbance we conclude that the best concentration of cobalt for the sensor activation is 75 µM of cobalt (Figure 8). |
- | + | In the tests using BSA or mice sera, the results meet our model, in which more normal albumin(or BSA) leads to less free cobalt, resulting in lower fluorescence. | |
+ | |||
+ | Thus, our results show that the composite RCNA+YFP generates fluorescence in the presence of cobalt. Furthermore, it can be used to distinguish between ischemic and non ischemic individuals. Further characterization, including usage of samples containing human IMA (ischemia modified albumin) and normal albumin, is needed, in order to improve our composite’s documentation. | ||
+ | |||
+ | Regarding TMAO, we found that the fluorescence increases after 7 hours of 100 µM TMAO treatment, showing that our TorCAD+RFP worked as expected. Further characterization using human sera is also needed for better composite’s documentation. | ||
<!--Discussão Velha--> | <!--Discussão Velha--> |
Latest revision as of 21:26, 27 October 2013