Team:INSA Toulouse/contenu/project/biological construction

From 2013.igem.org

(Difference between revisions)
(Created page with "{{:Team:INSA_Toulouse/template/header}} {{:Team:INSA_Toulouse/template/footer}}")
 
(27 intermediate revisions not shown)
Line 1: Line 1:
{{:Team:INSA_Toulouse/template/header}}
{{:Team:INSA_Toulouse/template/header}}
 +
 +
{{:Team:INSA_Toulouse/template/sidebar}}
 +
 +
<!--Contenu*/
 +
/**********/-->
 +
 +
<html>
 +
 +
<!--/* open Sans : fonnt Google*/-->
 +
 +
  <link href='http://fonts.googleapis.com/css?family=Open+Sans' rel='stylesheet' type='text/css'>
 +
 +
  <link href='http://fonts.googleapis.com/css?family=Open+Sans:400,600' rel='stylesheet' type='text/css'>
 +
 +
  <link href='http://fonts.googleapis.com/css?family=Open+Sans:800' rel='stylesheet' type='text/css'>
 +
 +
<!--/* CSS contenu*/-->
 +
 +
<style type="text/css">
 +
 +
  .title1{color:#20a8da; font-family:'Open Sans'; font-weight:600; font-size:24px;  margin:0 0 33px 0; border:none;}
 +
 +
  .title2{color:#5a6060; font-family:'Open Sans'; font-weight:600; font-size:18px; margin:0 0 30px 0; border:none;}
 +
 +
  .title3{color:#7f8c8c; font-family:'Open Sans'; font-weight:400; font-size:16px; margin:0 0 20px 0; border:none;}
 +
 +
  .texte{color:#5a6060; font-family:'Open Sans'; font-size:14px; margin:0 0 50px 0; line-height:24px; }
 +
 +
  .texteleft{color:#5a6060; font-family:'Open Sans'; font-size:14px; display:block; float:left; width:340px; margin:0 30px 50px 0;}
 +
 +
  .texteright{color:#5a6060; font-family:'Open Sans'; font-size:14px; display:block; float:right; width:340px; margin:0 0 50px 0;}
 +
 
 +
  .spantitle{color:#5a6060; font-family:'Open Sans'; font-weight:600; font-size:18px;}
 +
 +
  .list{float:left; width:225px; margin:0 15px 50px 0;}
 +
 +
  .list ul{color:#5a6060; font-family:'Open Sans'; font-size:14px;}
 +
 +
  .list .arrow li{ display : list-item; list-style-image : url(https://static.igem.org/mediawiki/2013/8/84/Insa-toulouse2013-listpuce1.png);}
 +
 +
  .list .circlearrow li{ display : list-item; list-style-image : url(https://static.igem.org/mediawiki/2013/9/94/Insa-toulouse2013-listpuce2.png);}
 +
 +
  .imgcontent{margin: 0 0 45px 0; border: 1px solid #e5e6e6;}
 +
  .imgcenter{display: block; margin-left: auto;margin-right: auto; border: 1px solid #e5e6e6}
 +
 +
  .tablecontent{
 +
      background-color:#FFFFFF;
 +
      width=100%;
 +
      cellpadding=0;
 +
      cellspacing=0;
 +
      -webkit-border-radius:9px;
 +
      -moz-border-radius:9px;
 +
      border-radius:9px;
 +
      -moz-box-shadow: 0px 4px 0px 0px #e5e6e6;
 +
      -webkit-box-shadow: 0px 4px 0px 0px #e5e6e6;
 +
      -o-box-shadow: 0px 4px 0px 0px #e5e6e6;
 +
      box-shadow: 0px 4px 0px 0px #e5e6e6;
 +
      margin: 0 0 40px 0;
 +
      filter:progid:DXImageTransform.Microsoft.Shadow(color=#e5e6e6, Direction=180, Strength=0);}
 +
 +
    .tablecontent tr{height:42px; color:#5a6060; font-family:'Open Sans'; font-size:14px;}
 +
 
 +
    .tablecontent td{padding:0 25px 0 20px;}
 +
 +
a:visited
 +
{
 +
    color: #5a6060;}
 +
 +
</style>
 +
 +
 +
<!--/* HTML Contenu*/-->
 +
 +
<div class="maincontent" style="width: 720px; margin: 25px 0 25px 0; float: right;">
 +
 +
 +
 +
  <h1 class="title1">Biological Modules</h1>
 +
 +
  <p class="texte">The first question we had to face for the <i>E.calculus</i> project was the transposition of an electronic device into a reasonable biological system.
 +
<br>The diagram of an electronic full adder (see below) can be divided into three independant parts: Input and Output signals (A, B, C<sub>in</sub>, S, C<sub>out</sub>) and logic gates (XOR, AND, OR). The rationale for doing this classification was: logic gates can be universal but input and output signals must be adaptable for diverse applications and microorganisms.</p>
 +
 
 +
  <img src="https://static.igem.org/mediawiki/2013/2/2c/Full-adder.png" class="imgcenter" />
 +
 +
  <br>
 +
  <h2 class="texte"> <span class="title2"><a href="https://2013.igem.org/Team:INSA_Toulouse/contenu/project/biological_construction/input">Input</span></h2>
 +
  <p class="texte">For the input, we needed a signal that could easily represents "ON" and "OFF" states. Light came as a natural solution because it is easily switchable to "ON" and "OFF" states and color can be varied to represent several inputs (A and B).</a></p>
 +
 +
 +
  <h2 class="texte"> <span class="title2"><a href="https://2013.igem.org/Team:INSA_Toulouse/contenu/project/biological_construction/output">Output</span></h2>
 +
  <p class="texte">The output needed to be a signal that can be easily seen without any complicated device or apparatus, something visual like the color of the organism bearing the full adder.</a></p>
 +
 +
 +
  <h2 class="texte"> <span class="title2"><a href="https://2013.igem.org/Team:INSA_Toulouse/contenu/project/biological_construction/carry">Carry</span></h2>
 +
  <p class="texte">The carry (C<sub>in</sub> and C<sub>out</sub>), belongs to both the input and output modules. We thought of a molecule that could transmit a message from one colony to the other. </a></p>
 +
 +
 +
  <h2 class="texte"> <span class="title2"><a href="https://2013.igem.org/Team:INSA_Toulouse/contenu/project/biological_construction/logic_gates">Logic Gates</span></h2>
 +
  <p class="texte">An electronic full adder is composed of 5 logic gates. Transcriptionally regulated logic gates exist and have already been described. However, a major breakthrough in Synthetic Biology appeared during 2013 with two publications related to recombination-based logic gates. They inspired us and are the basis of our work.</a></p>
 +
 +
 +
  <h2 class="texte"> <span class="title2"><a href="https://2013.igem.org/Team:INSA_Toulouse/contenu/project/biological_construction/full_adder">Full Adder</span></h2>
 +
  <p class="texte">The full adder is the integration of the signals (input, ouput, carry) with the logic gates. Its biological description can be found here.</a></p>
 +
 +
 +
 +
</div>
 +
 +
<div class="clear"></div>
 +
 +
</html>
{{:Team:INSA_Toulouse/template/footer}}
{{:Team:INSA_Toulouse/template/footer}}

Latest revision as of 16:26, 4 October 2013

logo


Biological Modules

The first question we had to face for the E.calculus project was the transposition of an electronic device into a reasonable biological system.
The diagram of an electronic full adder (see below) can be divided into three independant parts: Input and Output signals (A, B, Cin, S, Cout) and logic gates (XOR, AND, OR). The rationale for doing this classification was: logic gates can be universal but input and output signals must be adaptable for diverse applications and microorganisms.


Input

For the input, we needed a signal that could easily represents "ON" and "OFF" states. Light came as a natural solution because it is easily switchable to "ON" and "OFF" states and color can be varied to represent several inputs (A and B).

Output

The output needed to be a signal that can be easily seen without any complicated device or apparatus, something visual like the color of the organism bearing the full adder.

Carry

The carry (Cin and Cout), belongs to both the input and output modules. We thought of a molecule that could transmit a message from one colony to the other.

Logic Gates

An electronic full adder is composed of 5 logic gates. Transcriptionally regulated logic gates exist and have already been described. However, a major breakthrough in Synthetic Biology appeared during 2013 with two publications related to recombination-based logic gates. They inspired us and are the basis of our work.

Full Adder

The full adder is the integration of the signals (input, ouput, carry) with the logic gates. Its biological description can be found here.