Team:Freiburg/Project/1
From 2013.igem.org
NightworkMax (Talk | contribs) |
NightworkMax (Talk | contribs) |
||
Line 142: | Line 142: | ||
<div align="center"><b> [ILLUSTRATION: CRISPR/Cas Functioning Mechanism / Interactive Graphic]</b><br><br> | <div align="center"><b> [ILLUSTRATION: CRISPR/Cas Functioning Mechanism / Interactive Graphic]</b><br><br> | ||
- | <div align="justify"><p>CRISPR/Cas9 systems could, in the near future, commonly be used to target multiple spacers. Thereby, co-transfecting of standardized crRNA array plasmids with a Cas9 protein and tracrRNA encoding plasmid, might yield a powerful device for multiplex genome engineering (Cong, L. et al., 2013; Mali, P. et al., 2013). It opens up the possibility to deal with a wide range of yet unadressed scientific questions in the near future, including Systems Biology aspects and complex metabolic approaches. Other advantages cover monetary and logistic aspects, as the only component for modification lies indeed within the crRNA itself. In turn, this can be ordered as two corresponding forward and reverse primers - see Team Freiburg's <b><a href="https://2013.igem.org/Team:Freiburg/Project/crrna#design_tool" LINK="white">crRNA Designing Tool</a></b>. Financial, logistic and human ressources stay at a minimum. Accordingly, CRISPR/Cas type II-A systems have already been established for many model organisms, including <i>Saccharomyces cerevisiae</i> (DiCarlo et al., 2013), <i>Caenorhabditis elegans</i> (Friedland et al., 2013), <i>Arabidopsis thaliana</i> (Jiang et al., 2013), <i>Drosophila melanogaster</i> (Gratz et al., 2013), <i>Danio rerio</i> (Chang et al., 2013) and <i>Mus musculus</i> (Wang et al., 2013).</p | + | <div align="justify"><p>CRISPR/Cas9 systems could, in the near future, commonly be used to target multiple spacers. Thereby, co-transfecting of standardized crRNA array plasmids with a Cas9 protein and tracrRNA encoding plasmid, might yield a powerful device for multiplex genome engineering (Cong, L. et al., 2013; Mali, P. et al., 2013). It opens up the possibility to deal with a wide range of yet unadressed scientific questions in the near future, including Systems Biology aspects and complex metabolic approaches. Other advantages cover monetary and logistic aspects, as the only component for modification lies indeed within the crRNA itself. In turn, this can be ordered as two corresponding forward and reverse primers - see Team Freiburg's <b><a href="https://2013.igem.org/Team:Freiburg/Project/crrna#design_tool" LINK="white">crRNA Designing Tool</a></b>. Financial, logistic and human ressources stay at a minimum. Accordingly, CRISPR/Cas type II-A systems have already been established for many model organisms, including <i>Saccharomyces cerevisiae</i> (DiCarlo et al., 2013), <i>Caenorhabditis elegans</i> (Friedland et al., 2013), <i>Arabidopsis thaliana</i> (Jiang et al., 2013), <i>Drosophila melanogaster</i> (Gratz et al., 2013), <i>Danio rerio</i> (Chang et al., 2013) and <i>Mus musculus</i> (Wang et al., 2013).</p> |
<p> | <p> | ||
Line 159: | Line 159: | ||
(12) Mali, P., et al. (2013). RNA-guided human genome engineering via Cas9. Science 339, <i>823-826</i>. <br> | (12) Mali, P., et al. (2013). RNA-guided human genome engineering via Cas9. Science 339, <i>823-826</i>. <br> | ||
(13) Marraffini, L., and Sontheimer, E. (2008). CRISPR interference limits horizontal gene transfer in staphylococci by targeting DNA. Science 322, <i>1843-1845</i>. <br> | (13) Marraffini, L., and Sontheimer, E. (2008). CRISPR interference limits horizontal gene transfer in staphylococci by targeting DNA. Science 322, <i>1843-1845</i>. <br> | ||
- | (14) Wang, H., et al. (2013). One-step generation of mice carrying mutations in multiple genes by CRISPR/Cas-mediated genome engineering. Cell 153, <i>910-918</i>. <br></small> | + | (14) Wang, H., et al. (2013). One-step generation of mice carrying mutations in multiple genes by CRISPR/Cas-mediated genome engineering. Cell 153, <i>910-918</i>. <br></small></div> |
</p> <br> | </p> <br> |
Revision as of 18:49, 17 September 2013
Abstract
English
Just imagine there was a tool that combined all these aspects of lab work. A tool, that was able to rule several genes at once; a tool that allowed highly specific gene modulation via stimulus induction; a tool that would be a new approach to gene regulation.
This year’s Freiburg iGEM Team uses the prokaryotic CRISPR/Cas system to enable multiple endogenous gene regulation with minimal effort. The regulation is based on a protein-RNA-DNA interaction. Customizable RNAs function as a guide for our protein in order to target specific DNA sequences. By fusing effector domains to this protein, we aim at developing a tool for multiple and inducible gene activation and repression. Despite the system's prokaryotic origin, gene target sequences are adjustable for various organisms, offering a broad application variety of our tool. Due to its great potential, the CRISPR/Cas system has become of increasing importance in current research and can be implemented in a number of novel and interesting applications, such as gene therapy or tissue engineering.
Español
Imaginen que haya una herramienta que combine todos estos componentes de trabajo en el laboratório. Una herramienta que tiene la capacidad de controlar genes differentes; una herramienta que modula la expresión de genes con alta especifidad por inducción estimulante; una herramienta que revolucionaría regulación genética.
El equipo iGEM Freiburg del año 2013 utiliza el sistema procariota CRISPR/Cas para regular sinchronicamente la expresión de diferentes genes endogénicos, con esfuerzo mínimo. Esta regulación esta basada en una interacción entre ADN, ARN y proteínas. ARNs ajustadas funcionan como guías de nuestra proteína - enfocando secuéncias deseadas de ADN. A través de una fusión de dominós de efectores con la proteína, queremos generar una herramienta para la activación o represión inducible y simultáneo de genes diferentes. A pesar del orígen procariota, el sistema funciona tambíen en otras especies ofreciendo amplias aplicaciones. Últimamente, el enorme potencial prospetado de la misma, el sistema CRISPR/Cas ha ganado cada vez más importancia en la investigación actual y puede ser implementado en muchas aplicaciones nuevas y interesantes - por ejemplo en terapias genéticas o la medicina regenerativa.
Português
Imagine que houver uma ferramenta que combinaria todos estes componentes do trabalho no laboratório. Uma ferramenta que teria a capacidade de controllar génes differentes; uma ferramenta que lhes-deixaria modular a expressão de genes com altíssima specifidade à indução stímulativa; uma ferramenta que daria um meio novo a regulação genética
A equipe de iGEM Freiburg deste ano 2013 usa o sistema prokaryonte CRISPR/Cas para dar a possibilidade de sinchronicamente regular a expressão de genes endogênicos diferentes, com respetivo esforço mínimo. Essa regulação é baseada em uma interação entre ADN, ARN e proteína. ARNs ajustadas funcionam como guias do nosso proteína, rumando para sequéncias desejadas de ADN. Por meio de uma fusão entre domínos de efeitores com a proteína, quereriamos gerar uma ferramenta para a activação ou repressão inducível de génes diferentes ao mesmo tempo. Despeito do origem prokaryonte do sistema, combina-se bem com sequéncias genéticas objetivadas de várias espécies - oferecendo amplas aplicações da nossa ferramenta. Últimamente, pelo potencial enorme dele, o sistema CRISPR/Cas tem ganhado uma importância crescente em pesquisas correntes e pode ser implementada em númerosas aplicações novas e interessantes - por exemplo em terapias genéticas ou na medicina regenerativa.
Deutsch
Stellen Sie sich vor, es gäbe ein Werkzeug, welches all jene Aspekte der Laborarbeit vereint. Ein Werkzeug, welches in der Lage dazu ist, mehrere Gene gleichzeitig zu kontrollieren; ein Werkzeug, welches hochspezifische Genmodulationen über Induktionsstimuli erlaubt; ein Werkzeug, welches einen neuen Standard der Genregulation setzt.
Das diesjährige iGEM Team Freiburg verwendet ein prokaryotisches CRISPR/Cas System, um verschiedene endogene Genexepressionen parallel und mit minimalem Aufwand zu regulieren. Diese Art der Regulation basiert auf Protein-RNA-DNA Interaktionen. Dabei fungieren DesignerRNAs als Zielvektoren unseres Proteins, um spezifische DNA-Sequenzen anzusteuern. Durch Fusionen von Effektordomänen an dieses Protein, versuchen wir ein Werkzeug zu entwickeln, welches auf Induktion mehrere Gene zu aktivieren oder reprimieren vermag. Trotz der bakteriellen Herkunft des Systems ist das Ansteuern von Zielgenen in verschiedensten Organismen möglich, wodurch sich ein breites Anwendungsspektrum unseres Werkzeugs eröffnet. Aufgrund seines großen Potenzials entwickelt sich das CRISPR/Cas System aktuell zum Gegenstand intensiver Forschung und bietet eine Vielzahl interessanter Entwicklungsperspektiven - nicht zuletzt für neue Ansätze der Gentherapie und Regenerationsmedizin.
Introduction
CRISPR/Cas
Hidden as an uncharacterized E. coli locus for more than 15 years (Ishino et al., 1987), Barrangou et al. first described a previously unknown adaptive prokaryotic immune system (Barrangou et al., 2007). Almost half of all Eubacteria and most Archaea take advantage of this defence mechanism. Thereby, invasive DNA can be specifically and efficiently cleaved, controlling phage DNA transduction, unselective uptake through natural transformation and horizontal gene transfer by conjugation (Marrafini and Sontheimer, 2008).
This immune system‘s unique feature results from a complex machinery of highly-selective splicing proteins and recombinases, non-coding RNAs and repetitive DNA spacers which, in turn, encode different potential invador target sequences (Horvath and Barrangou, 2010). All of these components lie highly structured and in close vicinity to each other - mostly on single operons. Such loci were labeled as Clustered Regularly Interspaced Short Pallindromic Repeats - CRISPR - (Jansen et al., 2002) and differ widely among and within a great variety of subsystems in different species (Makarova et al., 2011). These findings hold for definite sequence order, ribonucleoprotein composition and functional mechanisms of CRISPRs. It wasn‘t before 2012 (Jinek et al., 2012) that CRISPR associated proteins - Cas - and CRISPR RNAs - crRNAs -, the system‘s two key driving components, have aroused greater interest of Synthetic Biologists. Thus, til date, some detailed structural and functional characteristics of these constituents yet remain to be elucidated.
Unlike Zinkfingers, TAL effectors or Meganucleases, Cas9 proteins direct DNA sequence specific adhesion by harnessing a unique crRNA scaffold. With ~ 20 nucleotides corresponding to the target element, Watson-Crick base pairing can be established between crRNAs and the desired DNA. By their short size, crRNAs are easy to order, insert and express from vector plasmids, containing an RNA-Polymerase III driving U6 promoter. So far, the only constraint for recognition between crRNA and target DNA is a protospacer adjacent motif - PAM -, located directly 3‘ of the protospacer locus and containing a NGG triplett. A second, trans-acting crRNA - tracrRNA - mediates pre-processing of the crRNA and indispensably enhances formation of the Cas-crRNA ribonucleoprotein complex (Jinek et al., 2012).
CRISPR/Cas9 systems could, in the near future, commonly be used to target multiple spacers. Thereby, co-transfecting of standardized crRNA array plasmids with a Cas9 protein and tracrRNA encoding plasmid, might yield a powerful device for multiplex genome engineering (Cong, L. et al., 2013; Mali, P. et al., 2013). It opens up the possibility to deal with a wide range of yet unadressed scientific questions in the near future, including Systems Biology aspects and complex metabolic approaches. Other advantages cover monetary and logistic aspects, as the only component for modification lies indeed within the crRNA itself. In turn, this can be ordered as two corresponding forward and reverse primers - see Team Freiburg's crRNA Designing Tool. Financial, logistic and human ressources stay at a minimum. Accordingly, CRISPR/Cas type II-A systems have already been established for many model organisms, including Saccharomyces cerevisiae (DiCarlo et al., 2013), Caenorhabditis elegans (Friedland et al., 2013), Arabidopsis thaliana (Jiang et al., 2013), Drosophila melanogaster (Gratz et al., 2013), Danio rerio (Chang et al., 2013) and Mus musculus (Wang et al., 2013).
Sources
(1) Barrangou, R. et al. (2007). CRISPR provides acquired resistance against viruses in prokaryotes. Science 315, 1709-1712.
(2) Chang, N. et al. (2013). Genome editing with RNA-guided Cas9 nuclease in zebrafish embryos. Cell research 23, 465-472.
(3) Cong, L., et al. (2013). Multiplex genome engineering using CRISPR/Cas systems. Science 339, 819-823.
(4) DiCarlo, J., et al. (2013). Genome engineering in Saccharomyces cerevisiae using CRISPR-Cas systems. Nucleic acids research 41, 4336-4343.
(5) Friedland, A., et al. (2013). Heritable genome editing in C. elegans via a CRISPR-Cas9 system. Nature methods.
(6) Gratz, S. et al. (2013). Genome engineering of Drosophila with the CRISPR RNA-guided Cas9 nuclease. Genetics.
(7) Horvath, P., and Barrangou, R. (2010). CRISPR/Cas, the immune system of bacteria and archaea. Science 327, 167-170.
(8) Ishino, Y., et al. (1987). Nucleotide Sequence of the iap Gene, Responsible for Alkaline Phosphatase Isozyme Conversion in Escherichia coli, and Identification of the Gene Product. Journal of Bacteriology 169, 5429-5433.
(9) Jansen, R., et al. (2002). Identification of genes that are associated with DNA repeats in prokaryotes. Molecular Microbiology 43, 1565-1575.
(10) Jinek, M., et al. (2012). A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337, 816-821.
(11) Makarova, K., et al. (2011). Evolution and classification of the CRISPR-Cas systems. Nat Rev Microbiol 9, 467-477.
(12) Mali, P., et al. (2013). RNA-guided human genome engineering via Cas9. Science 339, 823-826.
(13) Marraffini, L., and Sontheimer, E. (2008). CRISPR interference limits horizontal gene transfer in staphylococci by targeting DNA. Science 322, 1843-1845.
(14) Wang, H., et al. (2013). One-step generation of mice carrying mutations in multiple genes by CRISPR/Cas-mediated genome engineering. Cell 153, 910-918.
Aim
CONTENT
CONTENT
CONTENT
CONTENT
CONTENT
CONTENT
CONTENT
CONTENT
CONTENT
CONTENT
CONTENT
CONTENT
CONTENT
CONTENT
CONTENT
CONTENT
CONTENT
CONTENT
CONTENT
CONTENT
CONTENT
CONTENT
CONTENT
CONTENT
CONTENT
CONTENT
CONTENT
CONTENT
CONTENT
CONTENT
CONTENT
CONTENT
CONTENT
CONTENT
CONTENT
CONTENT
CONTENT
CONTENT
CONTENT
CONTENT
CONTENT
CONTENT
CONTENT
CONTENT
CONTENT
CONTENT
CONTENT
CONTENT
CONTENT
CONTENT
CONTENT
CONTENT
CONTENT
CONTENT
CONTENT
CONTENT
CONTENT
CONTENT
CONTENT
CONTENT
CONTENT
CONTENT
CONTENT
CONTENT
CONTENT
CONTENT
CONTENT
CONTENT
CONTENT
CONTENT
CONTENT
CONTENT
CONTENT
CONTENT
CONTENT
CONTENT
CONTENT
CONTENT
CONTENT
CONTENT
CONTENT