Team:TU-Munich/Team/Attributions

From 2013.igem.org

(Difference between revisions)
(Laboratory of Prof. Dr. Rost)
Line 28: Line 28:
Prof. Rost works in the field of bioinformatics and computer-based biology, focussing on the prediction of structure and function of proteins and genes. His team's specialty is the use of artificial intelligence and machine learning algorithms to predict structure and function of proteins.
Prof. Rost works in the field of bioinformatics and computer-based biology, focussing on the prediction of structure and function of proteins and genes. His team's specialty is the use of artificial intelligence and machine learning algorithms to predict structure and function of proteins.
-
''After developing an early version of our [https://2013.igem.org/Team:TU-Munich/Results/AutoAnnotator AutoAnnotator], we presented our work to Prof. Rost and his group. He gave us some very helpful advice on features we could add and provided us with access to his [http://www.predictprotein.org/ PredictProtein] server.''
+
''After developing an early version of our [https://2013.igem.org/Team:TU-Munich/Results/AutoAnnotator AutoAnnotator], we presented our work to Prof. Rost and his group. He gave us some very helpful advice on features we could add and provided us with access to his [http://www.predictprotein.org/ PredictProtein] server. A special "thank you" goes to Manfred Roos for tailoring the access point of the server to our needs.''
==== Laboratory of Prof. Dr. Schneitz ====
==== Laboratory of Prof. Dr. Schneitz ====

Revision as of 22:08, 23 September 2013


Laboratory of Prof. Dr. Skerra

The research group at the [http://biologische-chemie.userweb.mwn.de/index.html Chair of Biological Chemistry] at TUM works in the biochemical field of protein engineering and design with its objectives set on the construction of artifical proteins with novel functions through rational as well as deductive research approaches. In this context, a range of methods facilitating the functional and structural analysis of native proteins was developed over the last years, with an increasing role of protein crystallography.

Prof. Skerra kindly provided us with space in his laboratory, and generously advanced us money to loan to pay for team registration, travel expenses and laboratory resources. Moreover he visited our team meeting and adived us on our project.

Technical University Munich

Laboratory of Prof. Dr. Helmreich

[http://www.sww.bv.tum.de Sanitary Environmental Engineering] is a horizontal discipline comprised of civil engineering, process engineering and chemistry/biology. Research and teaching include the fields of water suppy, sewage and rain water treatment, water quality and the modelling of aquatic systems.

In our interview with Prof. Helmreich, she explained us several characterization techniques to assess water quality. Furthermore she kindly provided us with water samples from sewage treatment plants.

Laboratory of Prof. Dr. Langosch

The [http://www.wzw.tum.de/biopolymere Chair for Chemistry of Biopolymers] focuses on the structural biochemistry of integral membrane proteins. Core themes are molecular interactions between membrane proteins, strucural dynamics of membrane bound protein helices, membrane protein/lipid interactions and structure/function relationships of integral membrane protein complexes.

During the planning phase of our project we asked Prof. Langosch for advice concerning the design of the transmembrane domain of our constructs.

Laboratory of Prof. Dr. Rost

Prof. Rost works in the field of bioinformatics and computer-based biology, focussing on the prediction of structure and function of proteins and genes. His team's specialty is the use of artificial intelligence and machine learning algorithms to predict structure and function of proteins.

After developing an early version of our AutoAnnotator, we presented our work to Prof. Rost and his group. He gave us some very helpful advice on features we could add and provided us with access to his [http://www.predictprotein.org/ PredictProtein] server. A special "thank you" goes to Manfred Roos for tailoring the access point of the server to our needs.

Laboratory of Prof. Dr. Schneitz

The [http://plantdev.bio.wzw.tum.de/index.php?id=36 Chair for Plant Developmental Biology] is interested in the genetic and molecular basis of the regulatory pathways controlling organ development and tissue morphogenesis in plants.

The chair gave us great access to their microscopes and excellent support in how to use them. Many thanks therefore especially to Prasad Vaddepalli for his introduction to fluorescence microscopy.

Laboratory of Prof. Dr. Schwechheimer

The [http://www.sysbiol.wzw.tum.de Chair for Systems Biology of Plants] investigates a range of queries concerning the ubiquitin proteasome system of plants applying a combination of genetics, molecular biology and cell biology with both genomic and proteomic approaches.

Together with Prof. Schwechheimer we discussed several different signal transduction pathways that could be utilised for our kill-switch. Moreover he kindly granted us access to a fluorescence microscope.

Other Universities

Laboratory of Prof. Dr. Reski at Freiburg University

The team at the [http://www.plant-biotech.net/ Chair for Plant Biotechnology] is working on gene expression in the bryophyte model plant Physcomitrella patens (Hedw.) B.S.G. at different levels in correlation with phenotype analysis and additionally employs comparative genomics approaches.

The Reski team kindly supported us by supervising our moss transformations at their lab and by allwoing us to use some of their equipment and materials for the process. Our special thanks go to Dr. Gertrud Wiedemann.

Laboratory of Prof. Dr. Fussenegger at ETH Zurich

The research group at the [http://www.bsse.ethz.ch/groups/group_fussenegger/index/ Chair for Biotechnology and Bioengineering] is implementing progress in basic research to achieve generic and prototypic advances in human therapy by focusing on mammalian cells and capitalizing on an integrated interdisciplinary systems approach. Their current research initiatives include several programs interfacing with biopharmaceutical manufacturing, gene therapy and tissue engineering.

They kindly provided us with the pSH21 (IRES) plasmid.

Laboratory of Dr. G.D. Wright at McMaster University

The [http://www.thewrightlab.com Wright Lab] is trying to understand fundamental aspects of how antibiotics work, their sources and how bacteria become resistant to them.

They kindly provided us with the plasmids pDEST14_ereA and pDEST14_ereB.

Laboratory of Prof. Dr. Arndt at Potsdam University

The team at the [http://www.uni-potsdam.de/index.php?id=13895 Chair for Molecular Biotechnology] investigates the factors that mediate interactions in coiled-coil proteins in order to target coiled-coil domains of proteins e.g. involved in tumorigenesis, tumor proliferation and metastasis.

Sven Hagen kindly provided us with the pBad-mVenus (RFC 25) plasmid.

Webdesign

text


Software

James Padolsey

We used [http://james.padolsey.com James Padolsey´s] jQuery extension for [http://james.padolsey.com/javascript/cross-domain-requests-with-jquery/ Cross-domain AJAX requests] in the AutoAnnotator.