Team:ZJU-China/Project/Safety/CaCO3Shell
From 2013.igem.org
m (→Safety part I : Encapsulation of Living E.coli with CaCO3 / Ca3(PO4)2) |
(→Safety Part I : Encapsulation of Living E.coli with CaCO3 / Ca3(PO4)2) |
||
Line 9: | Line 9: | ||
<div class="content"> | <div class="content"> | ||
</html> | </html> | ||
- | == Safety Part I : | + | == Safety Part I : Calcium phosphate and Calcium carbonate shell == |
+ | __TOC__ | ||
+ | === Overview === | ||
+ | Our atrazine killer is designed to move in the plate and in the soil, if applied to eliminate the atrazine in the environment, and thus we need to guarantee that it will not move around and pose potential threat to the environment. Here, we come up with an idea to encapsulate our engineered bacteria with CaCO<sub>3</sub>/ ACP (amorphous calcium phosphate) on the purpose of constraining their movement before using and extending the preservation time. | ||
- | + | === Background === | |
+ | As biocompatible, stable, and nontoxic templates, calcium carbonate and calcium phosphate already have received increased attention. Ben Wang et.al has made artificial shells on yeast cells and proved that they would go into G0 state since proliferation of the encased cells is not observed even in the nutritive medium, which means yeast would not grow or die for a long time in a shell. | ||
- | + | Previous studies also pointed out that the electronic interaction is a key factor in biomineralization, especially the carboxylates(-COOH) or other charged functional groups rich in proteins. Cell surface can also be modified by introducing some functional factors. Polymers are usually been used because of the good capacity for self-assembly. Opposite charged polymers, such as PAH/PSS or PDADMAC/PAH are widely applied because of their good ability to form LBL layers on the surface and provide carboxylates that can bind to Ca<sup>2+</sup>. | |
+ | |||
+ | PDADMAC PAA | ||
+ | |||
+ | PAH PSS | ||
- | + | The use of decomposable shell will not only prevent our engineered bacteria from posing potential threat to environment before they are designed to function ,but have little negative impact on the viability of the living organism. | |
- | + | ||
- | === Protocol of Encapsulation of E.coli using CaCO<sub>3</sub> | + | === Design === |
+ | We believe that E. Coli share a similar character with the yeast cells, since they all have polysaccharide on the surface, which provide negatively charged hydroxyl(-OH) to bind with Ca<sup>2+</sup>. Thus we designed a calcium phosphate shell. In comparison, we used calcium carbonate shell to see the result. Also, we tried polymers to better form the shell. | ||
+ | |||
+ | CaCO<sub>3</sub> / ACP spontaneously precipitates by mixing of two concentrated solutions of calcium and carbonate/phosphate. The precipitation leads to small, spherical and non-aggregated amorphous nano-precipitates, instantly formed upon mixing saturated salt solutions like CaCl<sub>2</sub> and Na<sub>2</sub>CO<sub>3</sub>/ Na<sub>2</sub>HPO<sub>4</sub>. | ||
+ | |||
+ | |||
+ | Figure 1.Schematic diagram of the preparation of Calcium phosphate/carbonate shell | ||
+ | |||
+ | |||
+ | Figure 2.Schematic diagram of the preparation of LBL treated polymer shell | ||
+ | |||
+ | |||
+ | === Characterization === | ||
+ | E.Coli with artificial shells were viewed under SEM and TEM. From figure 3 we can tell that the artificial shells have successfully capsuled the E.Coli. | ||
+ | |||
+ | |||
+ | Figure 3. TEM image of biominerized E.Coli: a)bare E.Coli; b) E.Coli with Na<sub>2</sub>HPO<sub>4</sub> shell, 0.05 M CaCl<sub>2</sub>/0.05 M Na<sub>2</sub>HPO<sub>4</sub>; c) E.Coli with CaCO<sub>3</sub> shell, 0.33 M CaCl<sub>2</sub>/0.33 M Na<sub>2</sub>CO<sub>3</sub> | ||
+ | |||
+ | When capsuled by LBL multilayer and mineral, a spherical calcium phosphate has been formed. | ||
+ | |||
+ | |||
+ | Figure 4. TEM and SEM image of multilayer biominerized E.Coli: a)TEM image; b) SEM image | ||
+ | |||
+ | Also, EDTA were added after encapsulation to test whether it would affect the bacteria’s viability. The GFP detected by fluorescence microscope showed that most bacteria did not die after the shell formation and EDTA treatment procedure. | ||
+ | |||
+ | Figure 5. E.Coli GFP expression after shell formation and EDTA treatment procedure under fluorescence microscope | ||
+ | |||
+ | |||
+ | === Supporting imformation === | ||
+ | Protocol of Encapsulation of ''E.coli'' using CaCO<sub>3</sub> | ||
# 1 mL of overnight culture are added to a sterile reaction tube and centrifuged for 1 min at 12000 rpm. | # 1 mL of overnight culture are added to a sterile reaction tube and centrifuged for 1 min at 12000 rpm. | ||
# The cells are washed 3 times with 0.33M CaCl<sub>2</sub> | # The cells are washed 3 times with 0.33M CaCl<sub>2</sub> | ||
# Suspend the cells in 5 mL of 0.33M CaCl<sub>2</sub> solution and incubate them under gentle stirring for 15 min. | # Suspend the cells in 5 mL of 0.33M CaCl<sub>2</sub> solution and incubate them under gentle stirring for 15 min. | ||
- | # A 5mL aliquot of 0.33M Na<sub>2</sub>CO<sub>3</sub> is added under vigorous stirring for 30s. | + | # A 5mL aliquot of 0.33M Na<sub>2</sub>CO<sub>3</sub> is added under vigorous stirring for 30s. |
# Keep the whole suspension under stirring for 30 min for the precipitation of the CaCO<sub>3</sub> microcapsules. | # Keep the whole suspension under stirring for 30 min for the precipitation of the CaCO<sub>3</sub> microcapsules. | ||
- | + | Protocol of Encapsulation of ''E.coli'' using ACP | |
# 1 mL of overnight culture are added to a sterile reaction tube and centrifuged for 1 min at 12000 rpm. | # 1 mL of overnight culture are added to a sterile reaction tube and centrifuged for 1 min at 12000 rpm. | ||
# The cells are washed 3 times with 0.05M CaCl<sub>2</sub> | # The cells are washed 3 times with 0.05M CaCl<sub>2</sub> | ||
# Suspend the cells in 5 mL of 0.05M CaCl<sub>2</sub> solution and incubate them under gentle stirring for 15 min. | # Suspend the cells in 5 mL of 0.05M CaCl<sub>2</sub> solution and incubate them under gentle stirring for 15 min. | ||
# A 5 mL aliquot of 0.03M Na<sub>2</sub>HPO<sub>4</sub> is added under vigorous stirring at the speed of 3 drops per minutes. | # A 5 mL aliquot of 0.03M Na<sub>2</sub>HPO<sub>4</sub> is added under vigorous stirring at the speed of 3 drops per minutes. | ||
- | # Keep the whole suspension under stirring for 30 min for the precipitation of the | + | # Keep the whole suspension under stirring for 30 min for the precipitation of the ACP microcapsules. |
+ | # To release the cells from the calcium capsules, the capsules are dispersed in 0.25M EDTA (pH=8) solution under constant shaking for 30min and afterwards washed twice with 0.25M EDTA(pH=8) and twice with 0.05M NaCl. | ||
- | |||
- | + | Reference | |
- | [1] | + | [1] Yeast Cells with an Artificial Mineral Shell: Protection and Modification of Living Cells by Biomimetic Mineralization. Ben Wang et.al. Angew. Chem. 2008, 47 , 3560–3564 |
+ | [2] Encapsulation of Living''E. coli'' Cells in Hollow Polymer Microspheres of Highly Defined Size. Jennifer Flemke et.al. Biomacromolecules. 2013, 14, 207 - 214 | ||
- | |||
<html> | <html> |
Revision as of 18:21, 27 September 2013
Safety Part I : Calcium phosphate and Calcium carbonate shell
Contents |
Overview
Our atrazine killer is designed to move in the plate and in the soil, if applied to eliminate the atrazine in the environment, and thus we need to guarantee that it will not move around and pose potential threat to the environment. Here, we come up with an idea to encapsulate our engineered bacteria with CaCO3/ ACP (amorphous calcium phosphate) on the purpose of constraining their movement before using and extending the preservation time.
Background
As biocompatible, stable, and nontoxic templates, calcium carbonate and calcium phosphate already have received increased attention. Ben Wang et.al has made artificial shells on yeast cells and proved that they would go into G0 state since proliferation of the encased cells is not observed even in the nutritive medium, which means yeast would not grow or die for a long time in a shell.
Previous studies also pointed out that the electronic interaction is a key factor in biomineralization, especially the carboxylates(-COOH) or other charged functional groups rich in proteins. Cell surface can also be modified by introducing some functional factors. Polymers are usually been used because of the good capacity for self-assembly. Opposite charged polymers, such as PAH/PSS or PDADMAC/PAH are widely applied because of their good ability to form LBL layers on the surface and provide carboxylates that can bind to Ca2+.
PDADMAC PAA
PAH PSS
The use of decomposable shell will not only prevent our engineered bacteria from posing potential threat to environment before they are designed to function ,but have little negative impact on the viability of the living organism.
Design
We believe that E. Coli share a similar character with the yeast cells, since they all have polysaccharide on the surface, which provide negatively charged hydroxyl(-OH) to bind with Ca2+. Thus we designed a calcium phosphate shell. In comparison, we used calcium carbonate shell to see the result. Also, we tried polymers to better form the shell.
CaCO3 / ACP spontaneously precipitates by mixing of two concentrated solutions of calcium and carbonate/phosphate. The precipitation leads to small, spherical and non-aggregated amorphous nano-precipitates, instantly formed upon mixing saturated salt solutions like CaCl2 and Na2CO3/ Na2HPO4.
Figure 1.Schematic diagram of the preparation of Calcium phosphate/carbonate shell
Figure 2.Schematic diagram of the preparation of LBL treated polymer shell
Characterization
E.Coli with artificial shells were viewed under SEM and TEM. From figure 3 we can tell that the artificial shells have successfully capsuled the E.Coli.
Figure 3. TEM image of biominerized E.Coli: a)bare E.Coli; b) E.Coli with Na2HPO4 shell, 0.05 M CaCl2/0.05 M Na2HPO4; c) E.Coli with CaCO3 shell, 0.33 M CaCl2/0.33 M Na2CO3
When capsuled by LBL multilayer and mineral, a spherical calcium phosphate has been formed.
Figure 4. TEM and SEM image of multilayer biominerized E.Coli: a)TEM image; b) SEM image
Also, EDTA were added after encapsulation to test whether it would affect the bacteria’s viability. The GFP detected by fluorescence microscope showed that most bacteria did not die after the shell formation and EDTA treatment procedure.
Figure 5. E.Coli GFP expression after shell formation and EDTA treatment procedure under fluorescence microscope
Supporting imformation
Protocol of Encapsulation of E.coli using CaCO3
- 1 mL of overnight culture are added to a sterile reaction tube and centrifuged for 1 min at 12000 rpm.
- The cells are washed 3 times with 0.33M CaCl2
- Suspend the cells in 5 mL of 0.33M CaCl2 solution and incubate them under gentle stirring for 15 min.
- A 5mL aliquot of 0.33M Na2CO3 is added under vigorous stirring for 30s.
- Keep the whole suspension under stirring for 30 min for the precipitation of the CaCO3 microcapsules.
Protocol of Encapsulation of E.coli using ACP
- 1 mL of overnight culture are added to a sterile reaction tube and centrifuged for 1 min at 12000 rpm.
- The cells are washed 3 times with 0.05M CaCl2
- Suspend the cells in 5 mL of 0.05M CaCl2 solution and incubate them under gentle stirring for 15 min.
- A 5 mL aliquot of 0.03M Na2HPO4 is added under vigorous stirring at the speed of 3 drops per minutes.
- Keep the whole suspension under stirring for 30 min for the precipitation of the ACP microcapsules.
- To release the cells from the calcium capsules, the capsules are dispersed in 0.25M EDTA (pH=8) solution under constant shaking for 30min and afterwards washed twice with 0.25M EDTA(pH=8) and twice with 0.05M NaCl.
Reference
[1] Yeast Cells with an Artificial Mineral Shell: Protection and Modification of Living Cells by Biomimetic Mineralization. Ben Wang et.al. Angew. Chem. 2008, 47 , 3560–3564
[2] Encapsulation of LivingE. coli Cells in Hollow Polymer Microspheres of Highly Defined Size. Jennifer Flemke et.al. Biomacromolecules. 2013, 14, 207 - 214