Team:INSA Toulouse
From 2013.igem.org
Mesnageclem (Talk | contribs) |
|||
Line 171: | Line 171: | ||
<div> | <div> | ||
<a href="https://2013.igem.org/Team:INSA_Toulouse/contenu/project/overview"><img src="https://static.igem.org/mediawiki/2013/0/09/Schéma_logic_gates_modifié-1.png"/></a> | <a href="https://2013.igem.org/Team:INSA_Toulouse/contenu/project/overview"><img src="https://static.igem.org/mediawiki/2013/0/09/Schéma_logic_gates_modifié-1.png"/></a> | ||
- | |||
- | |||
- | |||
- | |||
</div> | </div> |
Revision as of 13:14, 4 October 2013
Project
One major goal of Synthetic Biology is the transposition of electronic devices such as logic gates into genetic modules capables of complex, autonomous decisions. Very recent publications described highly original logic gates utilizing serine recombinases, avoiding reversibility of the genetic switch and thus creating strong and robust genetic logical gates (AND, XOR, OR).
The E. calculus project exemplifies these genetic modules by creating a binary full-adder using AND and XOR gates. Our envisionned design could theoritically perform n-bits counting with a carry. Our project also aimed at validating original properties of these new genetic switches: irreversibility and accurate genetic transmission of the logic gate switched state to the cell'offspring.
Gallery Project
News