Team:Evry/Sensor
From 2013.igem.org
Line 9: | Line 9: | ||
<p> | <p> | ||
We constructed iron-responsive biosensors by combining 3 genetic parts: an E. coli promoter with a Ferric Uptake Regulator (Fur) binding site, a fluorescent reporter (sfGFP), and a transcriptional terminator. These sensors respond to ambient iron by using the <a href="https://2013.igem.org/Team:Evry/Project_FUR">Fur system</a> to repress a target gene. | We constructed iron-responsive biosensors by combining 3 genetic parts: an E. coli promoter with a Ferric Uptake Regulator (Fur) binding site, a fluorescent reporter (sfGFP), and a transcriptional terminator. These sensors respond to ambient iron by using the <a href="https://2013.igem.org/Team:Evry/Project_FUR">Fur system</a> to repress a target gene. | ||
+ | </p> | ||
+ | <p> | ||
+ | We constructed 4 differents iron sensor using promoters regions from <i>aceB</i>, <i>fes</i>, <i>fepA</i> and <i>yncE</i>. Finally, pAceB appears to be the best candidate to build our sensor system. | ||
</p> | </p> | ||
<br> | <br> |
Revision as of 00:50, 5 October 2013
Iron Sensor
We constructed iron-responsive biosensors by combining 3 genetic parts: an E. coli promoter with a Ferric Uptake Regulator (Fur) binding site, a fluorescent reporter (sfGFP), and a transcriptional terminator. These sensors respond to ambient iron by using the Fur system to repress a target gene.
We constructed 4 differents iron sensor using promoters regions from aceB, fes, fepA and yncE. Finally, pAceB appears to be the best candidate to build our sensor system.
Fig 1 Diagram of our genetic iron sensor. Iron binds the Ferric Uptake Regulator (Fur) to form a complex with high affinity for the Fur box in the promoter, here shown as the aceB promoter. Once the iron-Fur complex is bound to the promoter, it represses transcription of the target gene GFP. GFP expression is thus negatively correlated with iron availability.
Fig 2 Construction of an iron-responsive genetic element by fusing a Fur-regulated promoter with a reporter gene. Promoter-reporter fusions were made with flanking restriction sites that are compatible with Biobrick-based cloning.
NAME | FIGURE | DESCRIPTION |
---|---|---|
E. coli promoter with Fur binding site |
iron-Fur complex binds promoter to repress expression |
|
sfGFP |
Fluorescent reporter gene |
|
Terminator |
terminator to stop transcription |
|
Plasmid |
Biobrick-compatible plasmid backbone |
Table I Genetic elements used to make iron-responsive sensors.