Team:TU-Delft/Timer-Sumo-KillSwitch
From 2013.igem.org
(Difference between revisions)
Jfkooijman (Talk | contribs) |
Jfkooijman (Talk | contribs) |
||
Line 10: | Line 10: | ||
<p align="justify">The separate modules: <a href="https://2013.igem.org/Timer_Plus_Sumo">Timer plus SUMO </a> and <a href="https://2013.igem.org/KillSwitch">Kill Switch</a> are combined to form the complete model of the system: Timer - SUMO - Kill Switch. For the final model, the kill switch module is converted in such a way so as the holin and antiholin to be activated by the Pci promoter. | <p align="justify">The separate modules: <a href="https://2013.igem.org/Timer_Plus_Sumo">Timer plus SUMO </a> and <a href="https://2013.igem.org/KillSwitch">Kill Switch</a> are combined to form the complete model of the system: Timer - SUMO - Kill Switch. For the final model, the kill switch module is converted in such a way so as the holin and antiholin to be activated by the Pci promoter. | ||
</p> | </p> | ||
- | + | <center> | |
+ | <img src="https://static.igem.org/mediawiki/2013/1/1c/Comined.png" > | ||
+ | <p>Figure 1: Circuit of the kill switch</p></div> | ||
+ | </center> | ||
<h2 align="center">Differential Equations</h2> | <h2 align="center">Differential Equations</h2> |
Revision as of 10:16, 17 September 2013
Timer-SUMO-KillSwitch
The separate modules: Timer plus SUMO and Kill Switch are combined to form the complete model of the system: Timer - SUMO - Kill Switch. For the final model, the kill switch module is converted in such a way so as the holin and antiholin to be activated by the Pci promoter.
Figure 1: Circuit of the kill switch
Differential Equations
Parameters
Parameter | Value | Description | Units | Reference |
ca | 1020 | Translation rate per amino acid | min-1#a-1 | [7] |
cT7 | 4.16 | Maximum transcription rate of T7 | #m/min | [2] |
cptet | 2.79 | Maximum transcription rate of Ptet | #m/min | [4] |
cpconst | 0.5 | Transcription rate of Pconst | #m/min | Assumption |
cci | 1.79 | Maximum transcription rate of Pci | #m/min | [3] |
dmRNA | 0.231 | Degradation rate of mRNA | min-1 | [8] |
dH | 0.0348 | Degradation rate of holin / Antiholin | M/min | [17] |
dTET | 0.1386 | Degradation rate of TET | min-1 | [9] |
dCI | 0.042 | Degradation rate of CI | min-1 | [9] |
kb,HAH | 0.3*10-4 | Backward rate | [17] | |
kf,HAH | 11.7*10-4 | Forward rate | [17] | |
dPEP | 2.1*10-3 | Degradation rate of the peptide | min-1 | Assumed three times slower same as GFP |
dPSU | 6.3*10-3 | Degradation rate of the peptide plus SUMO | min-1 | Assumed the same as GFP |
dUlp | 1.263*10-2 | Degradation rate of Ulp | min-1 | Assumed twice the rate of GFP |
lt7 | 0.002 | Leakage factor of T7 | - | Assumption |
lptet | 0.002 | Leakage factor of Ptet | - | Assumption |
lci | 0.002 | Leakage factor of Pci | - | Assumption |
ktet | 6 | Dissociation constant of Ptet | #m | [10] |
kci | 20 | Dissociation constant of Pci | #m | [10] |
kcUlp | 3 | Turnover rate of Ulp | min-1 | [6] |
nci | 3 | Hills coefficient | - | [11] |
ntet | 3 | Hills coefficient | - | [11] |
s | 0 or 1 | Activation/Inactivation of T7 promoter | Binary | Assumption |
sci | 228 | Length of CI | amino acids | [12] |
sPSU | 18 + 110 | Length of peptide plus SUMO | amino acids | [12] |
sTET | 206 | Length of TET | amino acids | [13] |
sUlp | 233 | Length of Ulp1 | amino acids | [13] |
sH | 219 | Length of Holin | amino acids | |
sAH | 103 | Length of Antiholin | amino acids |
Results
Figure 1: Simulation Results