Team:Duke/Modeling/Codes/Kinetic3
From 2013.igem.org
(Difference between revisions)
Hyunsoo kim (Talk | contribs) (Created page with "{{Template:Team:Duke}} <div class="right_box"> = '''Mathematical Modeling of Bistable Toggle Switch''' = Clear["Global`*"] k1 = 100; d1 = 0.007; k2 = 100; d2 = 0.007; K1 =...") |
Hyunsoo kim (Talk | contribs) (→Mathematical Modeling of Bistable Toggle Switch) |
||
Line 346: | Line 346: | ||
Mesh -> Full, MeshStyle -> Directive[Gray], | Mesh -> Full, MeshStyle -> Directive[Gray], | ||
AxesLabel -> {"Log(\!\(\*SubscriptBox[\(K\), \(d, Repressor\\\ \ | AxesLabel -> {"Log(\!\(\*SubscriptBox[\(K\), \(d, Repressor\\\ \ | ||
- | 1\)]\))", "Log(\!\(\*SubscriptBox[\(K\), \(d, Repressor\\\ 2\)]\))"}, | + | 1\)]\))", "Log(\!\(\*SubscriptBox[\(K\), \(d, Repressor\\\ 2\)]\))"}, |
PlotLabel -> | PlotLabel -> | ||
Style["Bistable Regions for Leaky Promoters", | Style["Bistable Regions for Leaky Promoters", |
Latest revision as of 09:33, 22 September 2013
Mathematical Modeling of Bistable Toggle Switch
Clear["Global`*"] k1 = 100; d1 = 0.007; k2 = 100; d2 = 0.007; K1 = k1/d1; K2 = k2/d2; Nns = 5*10^6; delEpd = -1.0421*10^-19; kb = 1.3806*10^-23; T = 298; P = 3000; \[Alpha] = Nns*E^(delEpd/(kb*T))/P; n1 = 5; n2 = 0; (*Ksrd=;*) Knsrd = 10000; Stable1 = 0; Saddle1 = 0; Unstable1 = 0; matUp = {}; matDown = {}; RangeUp = {}; RangeDown = {}; For[Ksud = 0.1*10^-9, Ksud <= 7000*10^-9, Ksud = Ksud*1.1, Print[Ksud] For[Ksvd = 0.1*10^-9, Ksvd <= 7000*10^-9, Ksvd = Ksvd*1.1, Ksudweak = Ksud*10; Ksvdweak = Ksvd*10; Stable2 = 0; Saddle2 = 0; Unstable2 = 0; delEud = kb*T*Log[10, Ksud/Knsrd]; delEvd = kb*T*Log[10, Ksvd/Knsrd]; delEudweak = kb*T*Log[10, Ksudweak/Knsrd]; delEvdweak = kb*T*Log[10, Ksvdweak/Knsrd]; xdot[x_, y_] := K1/(1 + \[Alpha] ((1 + (y/Nns)*E^(-delEvd/(kb*T)))^ n1)*((1 + (y/Nns)*E^(-delEvdweak/(kb*T)))^n2)) - x; ydot[x_, y_] := K2/(1 + \[Alpha] ((1 + (x/Nns)*E^(-delEud/(kb*T)))^ n1)*((1 + (x/Nns)*E^(-delEudweak/(kb*T)))^n2)) - y; Jac[x_, y_] := {{Derivative[1, 0][xdot][x, y], Derivative[0, 1][xdot][x, y]}, {Derivative[1, 0][ydot][x, y], Derivative[0, 1][ydot][x, y]}}; fps = NSolve[xdot[x, y] == 0 && ydot[x, y] == 0, {x, y}, Reals]; (*Print[N[fps,3]]*) (*Print[Length[fps]-1]*) For[i = 1, i < Length[fps] + 1, i++, xtemp = x /. fpsi; ytemp = y /. fpsi; (*Print[N[xtemp,3]]*) (*Print[N[ytemp,3]]*) If[Im[xtemp] == 0 && Im[ytemp] == 0, If[xtemp > 0 && ytemp > 0, (*Print[" ",i-1," R1=",xtemp," R2=",ytemp, " Ksud=",Ksud," Ksvd=", Ksvd]*) If[ Re[Eigenvalues[Jac[xtemp, ytemp]]1] > 0 && Re[Eigenvalues[Jac[xtemp, ytemp]]2] > 0, Unstable2 += 1; ]; If[ Re[Eigenvalues[Jac[xtemp, ytemp]]1] < 0 && Re[Eigenvalues[Jac[xtemp, ytemp]]2] < 0, Stable2 += 1; ]; If[ Re[Eigenvalues[Jac[xtemp, ytemp]]1] < 0.0001 && Re[Eigenvalues[Jac[xtemp, ytemp]]2] > 0.0001, Saddle2 += 1; ]; If[ Re[Eigenvalues[Jac[xtemp, ytemp]]1] > 0.0001 && Re[Eigenvalues[Jac[xtemp, ytemp]]2] < 0.0001, Saddle2 += 1; ]; ] ] ] (*Print[Stable2, " ", Stable1]*) If[ (Stable2 == 2 && Stable1 == 1), Print["Switch (UP)"]; (*Print[{\[Alpha],\[Beta]}];*) matUp = Insert[matUp, {Log[10, Ksud], Log[10, Ksvd]}, 1]; RangeUp = Insert[RangeUp, {Ksud, Ksvd}, 1]; ]; If[ ((Stable2 == 1 && Stable1 == 2)), Print["Switch (DOWN)"]; (*Print[{\[Alpha],\[Beta]}];*) matDown = Insert[matDown, {Log[10, Ksud], Log[10, Ksvd]}, 1]; RangeDown = Insert[RangeDown, {Ksud, Ksvd}, 1]; ]; If[(Stable2 == 2), (*Print["BISTABLE ", \[Alpha], " ",\[Beta], ", Saddle: ", Saddle2 ];*) ]; If[ (Stable2 == 1), (*Print["MONOSTABLE ", \[Alpha]," ",\[Beta],", Saddle: ", Saddle2 ];*) ]; Saddle1 = Saddle2; Unstable1 = Unstable2; Stable1 = Stable2; ] ] k1 = 100; d1 = 0.007; k2 = 100; d2 = 0.007; K1 = k1/d1; K2 = k2/d2; Nns = 5*10^6; delEpd = -1.0421*10^-19; kb = 1.3806*10^-23; T = 298; P = 3000; \[Alpha] = Nns*E^(delEpd/(kb*T))/P; n1 = 5; n2 = 0; (*Ksrd=;*) Knsrd = 10000; Stable1 = 0; Saddle1 = 0; Unstable1 = 0; matUp1 = {}; matDown1 = {}; RangeUp1 = {}; RangeDown1 = {}; For[Ksud = 0.1*10^-9, Ksud <= 7000*10^-9, Ksud = Ksud*1.1, Print[Ksud] For[Ksvd = 0.1*10^-9, Ksvd <= 7000*10^-9, Ksvd = Ksvd*1.1, Ksudweak = Ksud*10; Ksvdweak = Ksvd*10; Stable2 = 0; Saddle2 = 0; Unstable2 = 0; delEud = kb*T*Log[10, Ksud/Knsrd]; delEvd = kb*T*Log[10, Ksvd/Knsrd]; delEudweak = kb*T*Log[10, Ksudweak/Knsrd]; delEvdweak = kb*T*Log[10, Ksvdweak/Knsrd]; xdot[x_, y_] := K1/(1 + \[Alpha] ((1 + (y/Nns)*E^(-delEvd/(kb*T)))^ n1)*((1 + (y/Nns)*E^(-delEvdweak/(kb*T)))^n2)) - x + 300; ydot[x_, y_] := K2/(1 + \[Alpha] ((1 + (x/Nns)*E^(-delEud/(kb*T)))^ n1)*((1 + (x/Nns)*E^(-delEudweak/(kb*T)))^n2)) - y + 300; Jac[x_, y_] := {{Derivative[1, 0][xdot][x, y], Derivative[0, 1][xdot][x, y]}, {Derivative[1, 0][ydot][x, y], Derivative[0, 1][ydot][x, y]}}; fps = NSolve[xdot[x, y] == 0 && ydot[x, y] == 0, {x, y}, Reals]; (*Print[N[fps,3]]*) (*Print[Length[fps]-1]*) For[i = 1, i < Length[fps] + 1, i++, xtemp = x /. fpsi; ytemp = y /. fpsi; (*Print[N[xtemp,3]]*) (*Print[N[ytemp,3]]*) If[Im[xtemp] == 0 && Im[ytemp] == 0, If[xtemp > 0 && ytemp > 0, (*Print[" ",i-1," R1=",xtemp," R2=",ytemp, " Ksud=",Ksud," Ksvd=", Ksvd]*) If[ Re[Eigenvalues[Jac[xtemp, ytemp]]1] > 0 && Re[Eigenvalues[Jac[xtemp, ytemp]]2] > 0, Unstable2 += 1; ]; If[ Re[Eigenvalues[Jac[xtemp, ytemp]]1] < 0 && Re[Eigenvalues[Jac[xtemp, ytemp]]2] < 0, Stable2 += 1; ]; If[ Re[Eigenvalues[Jac[xtemp, ytemp]]1] < 0.0001 && Re[Eigenvalues[Jac[xtemp, ytemp]]2] > 0.0001, Saddle2 += 1; ]; If[ Re[Eigenvalues[Jac[xtemp, ytemp]]1] > 0.0001 && Re[Eigenvalues[Jac[xtemp, ytemp]]2] < 0.0001, Saddle2 += 1; ]; ] ] ] (*Print[Stable2, " ", Stable1]*) If[ (Stable2 == 2 && Stable1 == 1), Print["Switch (UP)"]; (*Print[{\[Alpha],\[Beta]}];*) matUp1 = Insert[matUp1, {Log[10, Ksud], Log[10, Ksvd]}, 1]; RangeUp1 = Insert[RangeUp1, {Ksud, Ksvd}, 1]; ]; If[ ((Stable2 == 1 && Stable1 == 2)), Print["Switch (DOWN)"]; (*Print[{\[Alpha],\[Beta]}];*) matDown1 = Insert[matDown1, {Log[10, Ksud], Log[10, Ksvd]}, 1]; RangeDown1 = Insert[RangeDown1, {Ksud, Ksvd}, 1]; ]; If[(Stable2 == 2), (*Print["BISTABLE ", \[Alpha], " ",\[Beta], ", Saddle: ", Saddle2 ];*) ]; If[ (Stable2 == 1), (*Print["MONOSTABLE ", \[Alpha]," ",\[Beta],", Saddle: ", Saddle2 ];*) ]; Saddle1 = Saddle2; Unstable1 = Unstable2; Stable1 = Stable2; ] ] k1 = 100; d1 = 0.007; k2 = 100; d2 = 0.007; K1 = k1/d1; K2 = k2/d2; Nns = 5*10^6; delEpd = -1.0421*10^-19; kb = 1.3806*10^-23; T = 298; P = 3000; \[Alpha] = Nns*E^(delEpd/(kb*T))/P; n1 = 5; n2 = 0; (*Ksrd=;*) Knsrd = 10000; Stable1 = 0; Saddle1 = 0; Unstable1 = 0; matUp2 = {}; matDown2 = {}; RangeUp2 = {}; RangeDown2 = {}; For[Ksud = 0.1*10^-9, Ksud <= 7000*10^-9, Ksud = Ksud*1.1, Print[Ksud] For[Ksvd = 0.1*10^-9, Ksvd <= 7000*10^-9, Ksvd = Ksvd*1.1, Ksudweak = Ksud*10; Ksvdweak = Ksvd*10; Stable2 = 0; Saddle2 = 0; Unstable2 = 0; delEud = kb*T*Log[10, Ksud/Knsrd]; delEvd = kb*T*Log[10, Ksvd/Knsrd]; delEudweak = kb*T*Log[10, Ksudweak/Knsrd]; delEvdweak = kb*T*Log[10, Ksvdweak/Knsrd]; xdot[x_, y_] := K1/(1 + \[Alpha] ((1 + (y/Nns)*E^(-delEvd/(kb*T)))^ n1)*((1 + (y/Nns)*E^(-delEvdweak/(kb*T)))^n2)) - x + 600; ydot[x_, y_] := K2/(1 + \[Alpha] ((1 + (x/Nns)*E^(-delEud/(kb*T)))^ n1)*((1 + (x/Nns)*E^(-delEudweak/(kb*T)))^n2)) - y + 600; Jac[x_, y_] := {{Derivative[1, 0][xdot][x, y], Derivative[0, 1][xdot][x, y]}, {Derivative[1, 0][ydot][x, y], Derivative[0, 1][ydot][x, y]}}; fps = NSolve[xdot[x, y] == 0 && ydot[x, y] == 0, {x, y}, Reals]; (*Print[N[fps,3]]*) (*Print[Length[fps]-1]*) For[i = 1, i < Length[fps] + 1, i++, xtemp = x /. fpsi; ytemp = y /. fpsi; (*Print[N[xtemp,3]]*) (*Print[N[ytemp,3]]*) If[Im[xtemp] == 0 && Im[ytemp] == 0, If[xtemp > 0 && ytemp > 0, (*Print[" ",i-1," R1=",xtemp," R2=",ytemp, " Ksud=",Ksud," Ksvd=", Ksvd]*) If[ Re[Eigenvalues[Jac[xtemp, ytemp]]1] > 0 && Re[Eigenvalues[Jac[xtemp, ytemp]]2] > 0, Unstable2 += 1; ]; If[ Re[Eigenvalues[Jac[xtemp, ytemp]]1] < 0 && Re[Eigenvalues[Jac[xtemp, ytemp]]2] < 0, Stable2 += 1; ]; If[ Re[Eigenvalues[Jac[xtemp, ytemp]]1] < 0.0001 && Re[Eigenvalues[Jac[xtemp, ytemp]]2] > 0.0001, Saddle2 += 1; ]; If[ Re[Eigenvalues[Jac[xtemp, ytemp]]1] > 0.0001 && Re[Eigenvalues[Jac[xtemp, ytemp]]2] < 0.0001, Saddle2 += 1; ]; ] ] ] (*Print[Stable2, " ", Stable1]*) If[ (Stable2 == 2 && Stable1 == 1), Print["Switch (UP)"]; (*Print[{\[Alpha],\[Beta]}];*) matUp2 = Insert[matUp2, {Log[10, Ksud], Log[10, Ksvd]}, 1]; RangeUp2 = Insert[RangeUp2, {Ksud, Ksvd}, 1]; ]; If[ ((Stable2 == 1 && Stable1 == 2)), Print["Switch (DOWN)"]; (*Print[{\[Alpha],\[Beta]}];*) matDown2 = Insert[matDown2, {Log[10, Ksud], Log[10, Ksvd]}, 1]; RangeDown2 = Insert[RangeDown2, {Ksud, Ksvd}, 1]; ]; If[(Stable2 == 2), (*Print["BISTABLE ", \[Alpha], " ",\[Beta], ", Saddle: ", Saddle2 ];*) ]; If[ (Stable2 == 1), (*Print["MONOSTABLE ", \[Alpha]," ",\[Beta],", Saddle: ", Saddle2 ];*) ]; Saddle1 = Saddle2; Unstable1 = Unstable2; Stable1 = Stable2; ] ] RangeUp; RangeDown; ListPlot[{RangeUp, RangeDown}]; matUp; matDown; ListLinePlot[{matUp, matDown, matUp1, matDown1, matUp2, matDown2}, PlotStyle -> {Blue, Blue, Red, Red, Green, Green}, PlotRange -> {{-10, -5}, {-10, -5}}, InterpolationOrder -> 1, Mesh -> Full, MeshStyle -> Directive[Gray], AxesLabel -> {"Log(\!\(\*SubscriptBox[\(K\), \(d, Repressor\\\ \ 1\)]\))", "Log(\!\(\*SubscriptBox[\(K\), \(d, Repressor\\\ 2\)]\))"}, PlotLabel -> Style["Bistable Regions for Leaky Promoters", Directive[Large, Bold]], LabelStyle -> Directive[Medium, Bold]]