Team:UniSalento Lecce/Protocols
From 2013.igem.org
LeleBiotec (Talk | contribs) |
LeleBiotec (Talk | contribs) |
||
Line 508: | Line 508: | ||
<div class="togglecontent"> | <div class="togglecontent"> | ||
<p> | <p> | ||
- | + | - First, the protein of interest must be overexpressed: it’s necessary to transform BL21 cells | |
- | + | with the plasmid containing the gene (with his-tag) encoding the protein itself, and proceed | |
+ | with the normal protocol of induction with IPTG (see related protocol). | ||
+ | - As a result the cells must be denatured. | ||
+ | - The procedure continues with the protein purification on Ni-NTA resin (see related protocol). | ||
+ | - Once isolated the eluate, proceed to its quantification by Bradford method (see related | ||
+ | protocol). | ||
+ | - Now go ahead with the incubation of the protein with the metal: the volumes of protein | ||
+ | corresponding to 1, 5 and 10 ug have to be incubated with increasing concentrations of | ||
+ | metal solution and incubation buffer (20 mM Tris pH 7.6, 100 mM NaCl), for a total volume | ||
+ | of 100 ul. | ||
+ | - Put the samples on wheel at 4°C overnight. | ||
+ | - In order to eliminate the nickel excess, proceed with a molecular exclusion chromatography | ||
+ | on Sephadex G-25 resin (see related protocol). | ||
+ | - The samples have to be analyzed by ICP-AES with a Thermo iCAP 6300 Radial ICP-OES. | ||
+ | - Results interpretation. | ||
+ | </p> | ||
</div> | </div> |
Revision as of 08:32, 1 October 2013
Ours Protocols
- Pick a single bacterial colony (DH5 α, BL21), inoculate the bacteria in 5 ml of LB, incubated at 37°C over night.
- Inoculate 1 ml of the culture over night in 250 mL of SOB medium.
- Incubate the culture at 20 C with shaking (150-200 rpm) to O.D. 600 = 0,6.
- Divide in 50 ml falcon-tubes of and transfert the culture to ice for 10 min.
- Centrifuge the cells at 3000 rpm for 10 min at 4°C.
- Discard the supernatant, resuspend the pellet in 80 ml of cold TB and divide the culture in 2 falcon-tube (16 ml for tube)
- Put the tube in ice for 10 min.
- Centrifuge at 3000 rpm for 10 min at 4°C.
- Discard the supernatant, resuspend the pellet in 20 ml of cold TB (10 ml for tube) and gather all in a single tube.
- Add filtred DMSO for a final concentration of 7% (1,4 ml) and put in ice for 10 min.
- Aliquot in eppendorf (microfuge tube).
- Freeze the competent cells in liquid nitrogen, then store at -80°C.
- Inoculate a single colony in 2 ml of LB.
- Incubate the culture at 20 C with shaking (150-200 rpm) for 3 h to O.D. 600 = 0,03.
- Take 2 ml, in eppendorf, centrifuge at 13000 rpm for 1 min at 4°C.
- Resupend the pellet in 1 ml of fresh and filtered CaCl 2 0,1 M.
- Put in ice for 30 min.
- Centrifuge 1 min at 13000 rpm at room-temperature.
- Resuspend the pellet in 200 μl of fresh CaCl2 0,1 M.
- Mix 200 μl of competent cells with 200 ng (1 μl ) of pla smidic DNA.
- Put in ice for 30 min.3. Shock a t 42°C for 30 sec.
- Add 800 μl of LB (or SOC).
- Put a ll with sha king (500 rpm) a t 37°C for 45 min.
- Disca rd the superna ta nt, resuspend the pellet in 100 μl of LB.
- Pla te on LB + a mpicillin.
- Incuba te a t 37°C overnight.
- Choose a colony a nd inocula te in new LB broth.
- Pick a single colony from a freshly streaked selective plate and inoculate starter culture of 2–5 ml LB medium containing the appropriate selective antibiotic. Incubate for 8h at 37°C with vigorous shaking (300 rpm).
- Dilute the starter culture 1/500 to 1/1000 into selective LB medium. For high-copy plasmids inoculate 25 ml or 100 ml medium. For low-copy plasmids, inoculate 100 ml or 500 ml medium. Grow at 37°C for 12–16 h with vigorous shaking (300 rpm).
- Harvest the bacterial cells by centrifugation at 4000 rpm for 15 min at 4°C.
- Resuspend the bacterial pellet in 4 ml or 10 ml (we use 15 ml for pGEM, plasmid at low copy number) Buffer P1.
- Add 4 ml or 10 ml (we use 15 ml for pGEM, plasmid at low copy number) Buffer P2, mix gently but thoroughly by inverting 4–6 times, and incubate at room temperature for 5 min.
- Add 4 ml or 10 ml (we use 15 ml for pGEM, plasmid at low copy number) of chilled Buffer P3, mix immediately but gently by inverting 4–6 times, and incubate on ice for 15 min or 20 min.
- Centrifuge at ≥10000 rpm for 30 min at 4°C. Remove supernatant containing plasmid DNA promptly.
- Centrifuge the supernatant again at ≥10000 rpm for 15 min at 4°C. Remove supernatant containing plasmid DNA promptly, filter the sample over a prewetted, folded filter.
- Equilibrate a QIAGEN-tip 100 or QIAGEN-tip 500 by applying 4 ml or 10 ml Buffer QBT, and allow the column to empty by gravity flow.
- Apply the supernatant from step 8 to the QIAGEN-tip and allow it to enter the resin bygravity flow.
- Wash the QIAGEN-tip with 2 x 10 ml or 2 x 30 ml Buffer QC.
- Elute DNA with 5 ml or 15 ml Buffer QF. collect the eluate in 30 ml tube.13. Precipitate DNA by adding 3.5 ml or 10.5 ml (0.7 volumes) room-temperature isopropanol to the eluted DNA. Mix and centrifuge immediately at ≥4000 rpm for 1 h at 4°C. Carefully decant the supernatant.
- Wash DNA pellet with 2 ml or 5 ml of room-temperature 70% ethanol, and centrifuge at≥4000 rpm for 20 min. Carefully decant the supernatant without disturbing the pellet.
- Air-dry the pellet for 5–10 min, and redissolve the DNA in a suitable volume of buffer (e.g., TE buffer, pH 8.0, or 10 mM Tris·Cl, pH 8.5).
- Resuspend pelleted ba cteria l cells in 250 μl Buffer P1 a nd tra nsfer to a microcentrifuge tube. Ensure tha t RNa se A ha s been a dded to Buffer P1. No cell clumps should be visiblea fter resuspension of the pellet.
- Add 250 μl Buffer P2 a nd gently invert the tube 4–6 times to mix.Mix gently by inverting the tube. Do not vortex, a s this will result in shea ring ofgenomic DNA. If necessa ry , continue inverting the tube until the solution becomes viscous a nd slightly clea r. Do not a llow the ly sis rea ction to proceed for more tha n 5 min.3. Add 350 μl Buffer N3 a nd invert the tube immedia tely but gently 4–6 times.To a void loca lized precipita tion, mix the solution gently but thoroughly , immedia tely a fter a ddition of Buffer N
- The solution should become cloudy .
- Centrifuge for 10 min a t 13,000 rpm (~17,900 x g) in a ta ble-top microcentrifuge. A compa ct white pellet will form.
- Apply the superna ta nts from step 4 to the QIAprep spin column by deca nting orpipetting.
- Centrifuge for 30–60 s. Disca rd the flow-through.
- (Optiona l): Wa sh the QIAprep spin column by a dding 0.5 ml Buffer PB a ndcentrifuging for 30–60 s. Disca rd the flow-through.This step is necessa ry to remove tra ce nuclea se a ctivity when using endA+ stra inssuch a s the JM series, HB101 a nd its deriva tives, or a ny wild-ty pe stra in, whichha ve high levels of nuclea se a ctivity or high ca rbohy dra te content. Host stra inssuch a s XL-1 Blue a nd DH5αTM do not require this a dditiona l wa sh step.
- Wa sh QIA prep spin column by a dding 0.75 ml Buffer PE a nd centrifuging for 30–60 s.
- Disca
rd the flow-through, a
nd centrifuge for a
n a
dditiona
l 1 min to remove residua
lwa
sh buffer.
IMPORTANT: Residua l wa sh buffer will not be completely removed unless theflow-through is disca rded before this a dditiona l centrifuga tion. Residua l etha nolfrom Buffer PE ma y inhibit subsequent enzy ma tic rea ctions. - Pla ce the QIAprep column in a clea n 1.5 ml microcentrifuge tube. To elute DNA,a dd 50 μl Buffer EB (10 mM Tris·Cl, pH 8.5) or wa ter to the center of ea ch QIAprepspin column, let sta nd for 1 min, a nd centrifuge for 1 min.
- Prepa ra tion of the sa mples with 1 μg of pla smid a nd a dd dy e 6X.
- Prepa
re the 1% a
ga
rose gel:
- 50 ml distilled wa ter
- 1 ml TAE 50X
- 0,5 mg a ga rose
- 1 ml EdBr
La ter the gel poly meriza tion, a ssemble the electrophoretic a ppa ra tus a nd proceed with the a na ly sis with a volta ge of 75 V. Use TE running buffer.
- Run 2 μl of sa mple on a 1 % a ga rose gel for a na ly sis of the fra ction.
- Screen a t UV the result.
- Inocula te over night 500 μl of intresting culture in 50 ml di L.B. a t 37° C in sha cking (150-200 rpm) to O.D.= 0.375.
- Centrifuge a t 3000 rpm for 15 min.a t 4°C.
- Resuspend the pellet in 5 ml of following solution:
- 0,5 gr PEG 8000
- 250 μl DMSO
- 200 μl MgSO4 1M
- Add L.B. to bring the solution to 5ml
- Filter in 15 ml fa lcon a nd put the sa mple in ice for 30 min.
- Pick a single ba cteria l colony (BL21), inocula te the ba cteria in 150 ml of LB, incuba ted a t 37°C over night with sha king (150-200 rpm).
- Dilute to O.D.600 = 0,05, a llow the cells to grow to O.D.600 =0,7-0,8.
- Ta ke 1 ml of non-induced sa mple, centrifuge for 1 min. a t 4° C a t 4000 rpm, then a dd 20 μl La emmli buffer a nd frozen a t -20° C.
- Add the inducer (1 mM IPTG) to the culture in ra tio 1/1000 (15 μl), incuba te a t 37° Cwith sha king (150-200 rpm).
- Collect 1 ml of sa mple to 1, 2 a nd 4 hours from the a ddition of the inductor a nd process a s non-induced sa mple.
- Add 1/10 of a 3M Na -a ceta te pH 6.5 a nd 2 volumes of 100% etha nol
- Lea ve a t lea st 1 h a t -20 ° C (for the precipita tion of fra gments lea ve o.n.)
- Ctf 4000 rpm a t 4 ° C for 1 h
- Wa sh with 200-400 ul of cold 70% etha nol a nd a llow to dry
- Resuspend in 1X TE
- Ca rry out the mea surements of concentra tion with photometer (check DNA with a ga rose gel)
- Choose the option dsDNA
- Indica te the dilution of use
- In a qua rtz cuvette put 0.5 ml of wa ter a nd set the va lue bla nk
- Prepa re a qua rtz cuvette conta ining 490μl of wa ter a nd 10μl of the solution of dsDNA (1:50 dilution)
- Insert the cuvette into the photometer a nd proceed with the rea ding
- Rea d the given concentra tion a nd the a bsorba nce (A) a t 260 nm a nd 280 nm It is useful to collect the da ta of a bsorba nce A230, A260 a nd A280 to eva lua te the purity of the sa mple a na ly zed. To determine the purity of the nucleic a cid, we use the following rela tions: A260/A280 ra tio = index of conta mina tion by proteins For DNA in the report should be 1.6-1.8 a nd 1.8-2.0 for RNA, higher ra tios indica te conta mina tion by proteins. Ra tio A260/A230 = index of conta mina tion by ca rbohy dra tes a nd phenols (solvents) the optimum va lue of this ra tio is a bout 2.2, lower ra tios indica te conta mina tion from solvents.
An inta ct SDS PAGE electrophoresis sy stem should include: a ta nk, lid with power ca bles,electrode a ssembly , cell buffer da m, ca sting sta nds, ca sting fra mes, combs(usua lly 10-wellor 15-well), a nd gla ss pla tes (thickness 0.75mm or 1.0mm or 1.5mm).The SDS PAGE gel in a single electrophoresis run ca n be divided into sta cking gel a ndsepa ra ting gel. Sta cking gel (a cry la mide 5%) is poured on top of the sepa ra ting gel (a ftersolidifica tion) a nd a gel comb is inserted in the sta cking gel. The a cry la mide percenta ge inSDS PAGE gel depends on the size of the ta rget protein in the sa mple:
Acry la mide % | M.W. Ra nge |
---|---|
7,00% | 50 kDa - 500 kDa |
10,00% | 20 kDa - 300 kDa |
12,00% | 10 kDa - 200 kDa |
15,00% | 3 kDa - 100 kDa |
- Ma
ke the separating gel:
Set the ca sting fra mes (cla mp two gla ss pla tes in the ca sting fra mes) on the ca stingsta nds.Prepa re the gel solution (a s described a bove) in a sepa ra te sma ll bea ker.Swirl the solution gently but thoroughly .Pipet a ppropria te a mount of sepa ra ting gel solution (listed a bove) into the ga p between thegla ss pla tes.To ma ke the top of the sepa ra ting gel be horizonta l, fill in wa ter (either isopropa nol) intothe ga p until a overflow.Wa it for 20-30min to let it gela te. - Ma
ke the stacking gel:
Disca rd the wa ter a nd y ou ca n see sepa ra ting gel left.Pipet in sta cking gel untill a overflow.Insert the well-forming comb without tra pping a ir under the teeth. Wa it for 20-30min to let itgela te.3. Ma ke sure a complete gela tion of the sta cking gel a nd ta ke out the comb. Ta ke thegla ss pla tes out of the ca sting fra me a nd set them in the cell buffer da m. Pour the runningbuffer (electrophoresis buffer) into the inner cha mber a nd keep pouring a fter overflow untillthe buffer surfa ce rea ches the required level in the outer cha mber. - Prepa
re the sa
mples:
Mix y our sa mples with sa mple buffer (loa ding buffer). Hea t them in boiling wa ter for 5-10 min. - Loa d prepa red sa mples into wells a nd ma ke sure not to overflow. Don't forget loa ding protein ma rker into the first la ne. Then cover the top a nd connect the a nodes.
- Set a n a ppropria te volt a nd run the electrophoresis when every thing's done.
- As for the tota l running time, stop SDS-PAGE running when the downmost sign of theprotein ma rker (if no visible sign, inquire the ma nufa cturer) a lmost rea ches the foot line ofthe gla ss pla te.
For a 5 ml sta cking gel:
H2O | 2.975 ml |
0.5 M Tris-HCl, pH 6.8 | 1.25 ml |
10% (w/v) SDS | 0.05 ml |
Acry la mide/Bis-a cry la mide (30%/0.8% w/v) | 0.67 ml |
10% (w/v) a mmonium persulfa te (APS) | 0.05 ml |
TEMED | 0.005 ml |
For a 10ml sepa ra ting gel:
Acy la mide percenta ge | 6,00% | 8,00% | 10,00% | 12,00% | 15,00% |
---|---|---|---|---|---|
H2O | 5.2ml | 4.6ml | 3.8ml | 3.2ml | 2.2ml |
Acry la mide/Bis-a cry la mide (30%/0.8% w/v) | 2ml | 2.6ml | 3.4ml | 4ml | 5ml |
1.5M Tris(pH=8.8) | 2.6ml | 2.6ml | 2.6ml | 2.6ml | 2.6ml |
10% (w/v)SDS | 0.1ml | 0.1ml | 0.1ml | 0.1ml | 0.1ml |
10% (w/v) a mmonium persulfa te (APS) | 100μl | 100μl | 100μl | 100μl | 100μl |
TEMED | 10μl | 10μl | 10μl | 10μl | 10μl |
5X Sa mple buffer (loa ding buffer):
10% w/v | SDS |
10 mM | Dithiothreitol, or beta -merca pto-etha nol |
20 % v/v | Gly cerol |
0.2 M | Tris-HCl, pH 6.8 |
0.05% w/v | Bromophenolblue |
Ma ke sure y our ta rget protein dissolved in the liquid pha se, a nd no ina ppropria teingredients present (e.g. gua nidine hy drochloride ca n intera ct with SDS a nd ca useprecipita tion) Genera lly , to trea t y our unprepa red sa mple, y ou ca n use sonica tor, ly sisbuffer or both to sufficiently ma ke y our ta rget protein relea sed, a nd centrifuge to ma kesuperna ta nt a nd pellet sepa ra ted.
1x Running Buffer:
25 mM | Tris-HCl |
200 mM | Gly cine |
0.1% (w/v) | SDS |
- Resuspend 100ml of ba cteria 's pellet in 5ml of Zeria l Buffer (conserved a t 4°C) with a ddiction of 15,7 ul of β-merca ptoeta nolo 20mM.
- Add 400ul of ly sozime 10 mg/ml in H20 + 200ul PMSF (pheny lmethy lsulfony l fluoride) 50 mM
- Incuba te a t 4° C on the la b wheel for 1h
- Add 1250 ul of Na -deoxy chola te 20% a nd put on wheel for 10 min.
- Sy ringing the sa mple, with 1ml sy ringes, up to obta in a fluid solution.
- Cetrifuge a t 15000 g a t 4° C for 1h.
- Sepa ra te the pellet (membra nes) from the surna ta nt (cy tosol).
- The pellet must to be resuspended in 3,3 ml of Zeria l Buffer, freeze in N2 a nd conserve a t -80° C.
- The surna ta nt must to be freeze in N2 a nd conserve a t -80° C.
Before starting the preparation:
- Check if Wash Buffer NT3 was prepared according to section 3.
- Excise DNA fragment / solubilize gel slice
Note: Minimize UV exposure time to avoid damaging the DNA.
- Ta ke a clea n sca lpel to excise the DNA fra gment from a n a ga rose gel. Remove a llexcess a ga rose.
- Determine the weight of the gel slice a nd tra nsfer it to a clea n tube.
- For ea ch 100 mg of a ga rose gel < 2 % a dd 200 μL Buffer NTI. For gels conta ining > 2 %a ga rose, double the volume of Buffer NTI.
- Incuba te sa mple for 5–10 min a t 50 °C. Vortex the sa mple briefly every 2–3 min until thegel slice is completely dissolved!
- Pla ce a NucleoSpin® Gel a nd PCR Clea n-up Column into a Collection Tube (2 mL) a ndloa d up to 700 μL sa mple.
- Centrifuge for 30 s a t 11,000 x g. Disca rd flow-through a nd pla ce the column ba ck intothe collection tube.
- Loa d rema ining sa mple if necessa ry a nd repea t the centrifuga tion step.
- Wa sh silica membra ne, a dd 700 μL Buffer NT3 to the NucleoSpin® Gel a nd PCRClea n-up Column. Centrifuge for 30 s a t 11,000 x g.Disca rd flow-through a nd pla ce the column ba ck into the collection tube.Recommended: Repea t previous wa shing step to minimize cha otropic sa lt ca rry -over a ndlow A260/A230 (see section 2.7 for deta iled informa tion).
- Dry silica membra ne, centrifuge for 1 min a t 11,000 x g to remove Buffer NT3completely . Ma ke sure the spin column does not come in conta ct with the flow-throughwhile removing it from the centrifuge a nd the collection tube.Note: Residual ethanol from Buffer NT3 might inhibit enzymatic reactions. Total removal ofethanol can be achieved by incubating the columns for 2–5 min at 70 °C prior to elution.
- Elute DNA, pla ce the NucleoSpin® Gel a nd PCR Clea n-up Column into a new 1.5 mLmicrocentrifuge tube (not provided).Add 15–30 μL Buffer NE a nd incuba te a t room tempera ture (18–25 °C) for 1 min.Centrifuge for 1 min a t 11,000 x g.Note: DNA recovery of larger fragments (> 1000 bp) can be increased by multiple elutionsteps with fresh buffer, heating to 70 °C and incubation for 5 min.
- Sta rt with a dding 35 ul of Ni-NTA a t 250 ul of ly sa ted sa mple (vortex a nd ta ke the Ni-NTA resin under the chemica l hood)
- Incuba te the sa mple a t 4° C on wheel for 45 min.
- Centifuge a t 1000 rcf for 20 min a nd disca rd the surna ta nt
- Wa sh with 100 ul of WASH-SOLUTION a nd incuba te the sa mple a t 4° C on wheel for 5 min. Repea t for two times disca rding the surna ta nt.
- Add 35 ul of ELUTION BUFFER, incuba te a t 4° C on wheel for 5 min.
- Centrifuge a t 1000 rcf for 20 min, repea t for three times recovering the elua te.
- Conserve the elua te a t -20° C.
- Defreeze on ice the proteic sa mple.
- Add 5ul of sa mples in the via ls prepa red with the own na mes.
- Add 1ml of MIX Bio Ra d (50 ml of mix=10ml Bio Ra d dy e+40 ml H2O) in five via ls with a sca la r concentra tion of BSA.
- Vortex a nd wa it 10 min.5. Add 1ml of MIX Bio Ra d in the via ls with the sa mples.
- Vortex a nd wa it 10 min.
- Tra nsfer a ll the sa mple in the cuvettes.
- Rea d the concentra tion of the sa mples with the photometer (set the instrument a t 595 nm for rea ding), a fter building of the ca libra tion line with the BSA sa mples a t known concentra tion.
- Interpola te the va lue rea d on the ca libra tion line for know the sa mple's concentra tion a na ly zed.
- 2% (w/v) ba ctotriptone (5 g)
- 0,5% (w/v) y ea st extra ct (1,25 g)
- 10 mM Na Cl (500 μl Na Cl 5M)
- 2,5 mM KCl (630 μl KCl 1M)
- 10 mM MgCl2 (2,5 ml MgCl2 1M)
- 10 mM MgSO4 (2,5 ml MgSO4 1M)
Add distilled wa ter to fina l volume (250 ml), a utocla ve a ll in 1l beuta .
- 10 mM Pipes (10 ml Pipes 100 mM, stock a t 4°C)
- 15 mM Ca Cl2 (750 μl Ca Cl2 2 M, stock a t 4°C)
- 250 mM KCl (25 ml KCl 1 M)
- 55 mM MnCl2* (5,5 ml MnCl2 1M)
Add distilled wa
ter to fina
l volume (100 ml), filter. Stock a
t 4°C
*At pH 6,7 with KOH 1 M before to a
dd MnCl 2
Tris HCl pH8,5 | 64 mM |
MgCl | 8 mM |
EDTA | 2 mM |
- Plasmid extraction from E. coli DH5α (“Boiling prep” method)
- Turn on the heat block and boil water (preferably distilled) in a becker.
- Centrifuge 1,5 ml of culture grown O.N. at 13000 rpm for 2 minutes at 4°C.
- Discard the supernatant with a pump and resuspend the pellet in 50 ul of 25% sucrose (prepared in water). Swirl for 30 seconds.
- Add 300 ul of M-STET (5% Triton X-100, 50 mM EDTA, 50 mM Tris-HCl pH 8.0, 8% sucrose).
- Swirl for 10 seconds.
- Add 25 ul of lysozyme from stock 10 mg/ml (prepared in TE).
- Put at 100°C for 45 seconds.
- From 100°C put immediately on ice and then centrifuge at 13000 rpm for 15 minutes at 4°C.
- Remove the mucous pellet with the help of a toothpick and add 40 ul of 3M Na-acetate pH 5.2 and 270 ul of isopropanol from room temperature to the supernatant. Mix by inverting 5-6 times and let fall 1 minute at room temperature.
- Centrifuge at 13000 rpm for 15 minutes (better at room temperature).
- Promptly eliminate the supernatant from each tube to keep then upside down on a piece of absorbent paper.
- Wash the pellet with 250 ul of 70% cold ethanol. Make a tube at a time and hold it upside down.
- Dry the pellet.
- Resuspend in 30 ul of TE + RNase.
- Take a 1 ml syringe, remove the needle and, using the plunger, pusha bit of cotton (taken from a pipette) on the bottom of the syringe,making it adhere well to the walls.
- Using a Pasteur pipette, take the Sephadex* resin (well mixed) andplace it carefully in the column, from the bottom to the top, avoidingthe formation of air bubbles.
- Place the column so loaded in a 15 ml tube on the bottom of which itwas filed an eppendorf without cap.
- Centrifuge the column, placed in the collection system, at 1600 rpmfor 5 minutes at 4°C. Remove the eluate, recharge the column withnew resin up to the brim, then centrifuge. Repeat until the entirecolumn is occupied by the resin and uniformly packed.
- Equilibrate the column with 100 ul of TE 1X and centrifuge at 1600rpm for 5 minutes at 4°C. Then, empty the eppendorf on the bottom,load 100 ul of TE 1X and centrifuge always at 1600 rpm for 5 minutesat 4°C. Check the eluate volume and repeat the operation until the100 ul loaded will be exactly recovered at the bottom of the column,indicating that it is well balanced.
- Add the sample.
*Preparation of a Sephadex Resin
Take a 500 ml bottle, pour 160 ml of sterile distilled water and 10 g ofSephadex G-50. Shake and leave to deposit the resin. Remove thesupernatant, containing dextrans, and add more sterile distilled water upto 160 ml. Repeat these washings until the supernatant is clear. After theremoval of the last supernatant, equilibrate the resin in TE 1X at pH 7,6(add TE 1X up to 160 ml) and autoclave for 15 minutes. Store at roomtemperature.
- First, the protein of interest must be overexpressed: it’s necessary to transform BL21 cells with the plasmid containing the gene (with his-tag) encoding the protein itself, and proceed with the normal protocol of induction with IPTG (see related protocol). - As a result the cells must be denatured. - The procedure continues with the protein purification on Ni-NTA resin (see related protocol). - Once isolated the eluate, proceed to its quantification by Bradford method (see related protocol). - Now go ahead with the incubation of the protein with the metal: the volumes of protein corresponding to 1, 5 and 10 ug have to be incubated with increasing concentrations of metal solution and incubation buffer (20 mM Tris pH 7.6, 100 mM NaCl), for a total volume of 100 ul. - Put the samples on wheel at 4°C overnight. - In order to eliminate the nickel excess, proceed with a molecular exclusion chromatography on Sephadex G-25 resin (see related protocol). - The samples have to be analyzed by ICP-AES with a Thermo iCAP 6300 Radial ICP-OES. - Results interpretation.