Team:INSA Toulouse/contenu/project/binary reminder
From 2013.igem.org
Line 140: | Line 140: | ||
<p class="texte">For those who don’t remember your binary counting courses (or for those who don’t have any idea about binary counting), we provide a little reminder!</p> | <p class="texte">For those who don’t remember your binary counting courses (or for those who don’t have any idea about binary counting), we provide a little reminder!</p> | ||
- | <img src="https://static.igem.org/mediawiki/2013/ | + | <img src="https://static.igem.org/mediawiki/2013/c/c4/Binary_decimal_2.png" class="imgcontent" /> |
<table class="tablecontent"> | <table class="tablecontent"> |
Revision as of 07:44, 3 October 2013
Boolean Logic Based Devices
What is a logic gate?
A logic gate is an idealized or physical device implementing a Boolean function. In other terms it performs a logical operation on one or more logical inputs and produces a single logical output (From Wikipedia). Simply said: logic gates are the devices that perform the boolean logic operations.
AND Gate
For an AND gate, if the two inputs are equal to 1, the result equals 1.
OR Gate
For an OR gate, if one or the other (or both) of the inputs are equal to 1, the result equals 1.
XOR Gate
For a XOR gate, if one or the other (but not both of them) of the inputs are equal to 1, the result equals 1.
Electronic Full Adder
This is the truth table of a full adder.
How to count with binary numbers?
For those who don’t remember your binary counting courses (or for those who don’t have any idea about binary counting), we provide a little reminder!
Operation | Result | ||
Decimal | 5 | 2 | 7 |
Binary | 1 (1*2^2) 0 (0*2^1) 1 (1*2^0) |
0 (0*2^2) 1 (1*2^1) 0 (0*2^0) |
1 (1*2^2) 1 (1*2^1) 1 (1*2^0) |