Team:INSA Toulouse/contenu/lab practice/results/carry

From 2013.igem.org

(Difference between revisions)
Line 151: Line 151:
<div class="maincontent" style="width: 720px; margin: 25px 0 25px 0; float: right;">
<div class="maincontent" style="width: 720px; margin: 25px 0 25px 0; float: right;">
-
   <h1 class="title1">Results</h1>
+
   <h1 class="title1">Modelling Results</h1>
    
    
-
   <h2 class="title2"> Carry Characterizations</h2>
+
   <h3 class="title3">Experimentation</h3>
 +
<p class="texte">We realized many experiences in order to measure how AHL diffuse into agar medium. We used a particular bacteria, Chromobacterium violaceum, which is capable to detect presence of AHL by producing a purple pigment, the violacein.<br><br>
 +
Figure 4 shows petri dishes containing eight colonies of bacteria placed at 5, 10, 15, 20, 25, 30, 35 and 40 mm from the center of the box. With this experience we can track the diffusion of the AHL. Also we can see that the colonies are in a spiral disposition. This typical disposition allow us to avoid the problem of utilisation of AHL of the n-1 colony to the n colony.
 +
</p>
 +
<center><img style="width:700px" src="https://static.igem.org/mediawiki/2013/9/90/Tri_boite.png" class="imgcontentcaption"/></center>
 +
<center><p class="textecaption"><i>Figure 4: Photographs at 25h of petri dishes containing each 8 Chromobacterium violaceum colonies from 5 mm to 40 mm.</i></p></center>
-
  <h3 class="title3">XOR1</h3>
+
<p class="texte">Figure 5 represent the evolution of AHL diffusion versus time.
 +
</p>
 +
<img style="width:500px" src="https://static.igem.org/mediawiki/2013/6/6b/Carry7.png" class="imgcontentcaption"/>
-
<div class="accordeon">
+
<p class="textecaption"><i>Figure 5: Evolution of AHL diffusion into petri dish.</i></p>
-
  <h2 class="faq" title="Click to open the FAQ">  In vitro</h2>
+
<p class="texte">With this experience we can represent on figure 6 the surface of AHL diffusion (surface is a disk) versus time in order to find the coefficient of diffusion of AHL into LBagar. The directing coefficient of the regression line give us the order of magnitude of coefficient of diffusion, we find an order of 10-8 m²/s. This coefficient is an important value to develop analytical and numerical modelling.
-
  <div class="infos">
+
</p>
-
  <img style="width:340px;" src="https://static.igem.org/mediawiki/2013/2/20/XOR1_petit.jpg" class="imgcontent" />
+
<img style="width:500px" src="https://static.igem.org/mediawiki/2013/0/04/Coefficient_of_diffusivity.PNG" class="imgcontentcaption"/>
-
  <img style="width:340px; float:right;" src="https://static.igem.org/mediawiki/2013/6/6b/XOR1_bio_80.jpg" class="imgcontent" />
+
-
<div class="clear"></div>
+
-
  <img style="width:340px; float:left;" src="https://static.igem.org/mediawiki/2013/7/72/Test_carac.jpg" class="imgcontent" />
+
-
  <img style="width:340px; float:right;" src="https://static.igem.org/mediawiki/2013/7/78/Graph.jpg" class="imgcontent" />
+
-
<div class="clear"></div>
+
-
  <p class="texte"><i>Description des conditions d'expérimentation</i></p>
+
-
  <br>
+
<p class="textecaption"><i>Figure 6: Determination of coefficient of diffusion of AHL into LBagar medium.</i></p>
-
<br>
+
-
  <p class="texteprotocol"><a href="https://2013.igem.org/Team:INSA_Toulouse/contenu/lab_practice/notebook/protocols/charac_recomb">In vitro recombinase characterization protocol</a></p>
+
-
  <br>
+
-
<img style="width:20px"  src="https://static.igem.org/mediawiki/2013/2/23/Top_arrow.png"class="imgcontent2" /><a href="https://2013.igem.org/Team:INSA_Toulouse/contenu/lab_practice/results">Back to the top</a></p>
+
-
  <br>
+
-
  <br>
+
-
  </div>
+
-
</div>
+
-
<div class="accordeon">
 
-
 
-
  <h2 class="faq" title="Click to open the FAQ">  In vivo</h2>
 
-
  <div class="infos">
 
-
  <img style="width:340px; float:left;" src="https://static.igem.org/mediawiki/2013/2/20/XOR1_petit.jpg" class="imgcontent" />
 
-
  <img style="width:340px; float:right;" src="https://static.igem.org/mediawiki/2013/6/6b/XOR1_bio_80.jpg" class="imgcontent" />
 
-
<div class="clear"></div>
 
-
  <img style="width:340px; float:left;" src="https://static.igem.org/mediawiki/2013/7/72/Test_carac.jpg" class="imgcontent" />
 
-
  <img style="width:340px; float:right;" src="https://static.igem.org/mediawiki/2013/7/78/Graph.jpg" class="imgcontent" />
 
-
<div class="clear"></div>
 
-
  <p class="texte"><i>Description des conditions d'expérimentation</i></p>
 
-
 
-
  <br>
 
-
<br>
 
-
  <p class="texteprotocol"><a href="https://2013.igem.org/Team:INSA_Toulouse/contenu/lab_practice/notebook/protocols/charac_recomb">In vitro recombinase characterization protocol</a></p>
 
-
  <br>
 
-
<img style="width:20px"  src="https://static.igem.org/mediawiki/2013/2/23/Top_arrow.png"class="imgcontent2" /><a href="https://2013.igem.org/Team:INSA_Toulouse/contenu/lab_practice/results">Back to the top</a></p>
 
-
  <br>
 
-
  <br>
 
-
  </div>
 
-
</div>
 
 +
<h3 class="title3">Analytical Model</h3>
 +
<p class="texte">After the creation of our first model above which allowed us to find relevant answer for our system, we thought that it term of modeling we weren’t really satisfied. That is why we developed a new model based on equation of continuity in cylindrical coordinates. The general equation in our case is the following.
 +
Equation of continuity:
 +
</p>
 +
<center><img src="https://static.igem.org/mediawiki/2013/d/d1/Equation_of_continuity.PNG" class="imgcontent"/></center>
<div class="clear"></div>
<div class="clear"></div>
-
  <h3 class="title3">AND1</h3>
 
-
<div class="accordeon">
+
<p class="texte">Bird, R. B., Stewart, W. E., & Lightfoot, E. N. (1960). Transport phenomena (Vol. 2). New York: Wiley.
 +
</p>
-
  <h2 class="faq" title="Click to open the FAQ">   In vitro</h2>
+
<center><img src="https://static.igem.org/mediawiki/2013/3/30/Equation_of_continuity_develop.PNG" class="imgcontent"/></center>
-
  <div class="infos">
+
-
  <img style="width:340px; float:left;" src="https://static.igem.org/mediawiki/2013/2/20/XOR1_petit.jpg" class="imgcontent" />
+
-
  <img style="width:340px; float:right;" src="https://static.igem.org/mediawiki/2013/6/6b/XOR1_bio_80.jpg" class="imgcontent" />
+
<div class="clear"></div>
<div class="clear"></div>
-
  <img style="width:340px; float:left;" src="https://static.igem.org/mediawiki/2013/7/72/Test_carac.jpg" class="imgcontent" />
 
-
  <img style="width:340px; float:right;" src="https://static.igem.org/mediawiki/2013/7/78/Graph.jpg" class="imgcontent" />
 
-
<div class="clear"></div>
 
-
  <p class="texte"><i>Description des conditions d'expérimentation</i></p>
 
-
  <br>
+
<p class="texte">In our case we have:  
-
<br>
+
        No reaction
-
  <p class="texteprotocol"><a href="https://2013.igem.org/Team:INSA_Toulouse/contenu/lab_practice/notebook/protocols/charac_recomb">In vitro recombinase characterization protocol</a></p>
+
        No evolution in z and θ direction
-
  <br>
+
        dwA/dr=0 because of the mass equation (Dρ/Dt=0) with ρ=cste
-
<img style="width:20px"  src="https://static.igem.org/mediawiki/2013/2/23/Top_arrow.png"class="imgcontent2" /><a href="https://2013.igem.org/Team:INSA_Toulouse/contenu/lab_practice/results">Back to the top</a></p>
+
-
  <br>
+
-
  <br>
+
-
  </div>
+
-
</div>
+
-
<div class="accordeon">
+
After simplification:
-
 
+
</p>
-
  <h2 class="faq" title="Click to open the FAQ">  In vivo</h2>
+
<center><img src="https://static.igem.org/mediawiki/2013/6/6f/Equation_of_continuity_develop_simpli.PNG" class="imgcontent"/></center>
-
  <div class="infos">
+
-
  <img style="width:340px; float:left;" src="https://static.igem.org/mediawiki/2013/2/20/XOR1_petit.jpg" class="imgcontent" />
+
-
  <img style="width:340px; float:right;" src="https://static.igem.org/mediawiki/2013/6/6b/XOR1_bio_80.jpg" class="imgcontent" />
+
<div class="clear"></div>
<div class="clear"></div>
-
  <img style="width:340px; float:left;" src="https://static.igem.org/mediawiki/2013/7/72/Test_carac.jpg" class="imgcontent" />
 
-
  <img style="width:340px; float:right;" src="https://static.igem.org/mediawiki/2013/7/78/Graph.jpg" class="imgcontent" />
 
-
<div class="clear"></div>
 
-
  <p class="texte"><i>Description des conditions d'expérimentation</i></p>
 
-
 
-
  <br>
 
-
<br>
 
-
  <p class="texteprotocol"><a href="https://2013.igem.org/Team:INSA_Toulouse/contenu/lab_practice/notebook/protocols/charac_recomb">In vitro recombinase characterization protocol</a></p>
 
-
  <br>
 
-
<img style="width:20px"  src="https://static.igem.org/mediawiki/2013/2/23/Top_arrow.png"class="imgcontent2" /><a href="https://2013.igem.org/Team:INSA_Toulouse/contenu/lab_practice/results">Back to the top</a></p>
 
-
  <br>
 
-
  <br>
 
-
  </div>
 
-
</div>
 
 +
<p class="texte">After simplification and changing the mass in concentration we obtained:
 +
</p>
 +
<center><img src="https://static.igem.org/mediawiki/2013/7/75/Equation_of_continuity_change_mass.PNG" class="imgcontent"/></center>
<div class="clear"></div>
<div class="clear"></div>
-
 
+
<p class="texte">To solve this equation we first thought to use the variables separation but we faced different issues, but we found after some more research a new solution which fit better with our system. This solution is corresponding to a Dirac impulsion. This is not the perfect solution but this is the closest analytical solution to our system. The only difference with our system is that the boundary condition for C(0;0), is not exactly the same. For the Dirac impulsion C(0;0)->∞,  but this approximation can be acceptable  for our system considering that our AHL concentration is high at the beginning of the experiment and the loading is really small.This is our analytical solution:
-
 
+
</p>
-
<h3 class="title3">Red Light Sensor</h3>
+
<center><img src="https://static.igem.org/mediawiki/2013/c/c0/Equation_of_continuity_analitycal_solution.PNG" class="imgcontent"/></center>
-
 
+
-
 
+
-
<div class="accordeon">
+
-
 
+
-
  <h2 class="faq" title="Click to open the FAQ">   In vitro</h2>
+
-
  <div class="infos">
+
-
  <img style="width:340px; float:left;" src="https://static.igem.org/mediawiki/2013/2/20/XOR1_petit.jpg" class="imgcontent" />
+
-
  <img style="width:340px; float:right;" src="https://static.igem.org/mediawiki/2013/6/6b/XOR1_bio_80.jpg" class="imgcontent" />
+
<div class="clear"></div>
<div class="clear"></div>
-
  <img style="width:340px; float:left;" src="https://static.igem.org/mediawiki/2013/7/72/Test_carac.jpg" class="imgcontent" />
 
-
  <img style="width:340px; float:right;" src="https://static.igem.org/mediawiki/2013/7/78/Graph.jpg" class="imgcontent" />
 
-
<div class="clear"></div>
 
-
  <p class="texte"><i>Description des conditions d'expérimentation</i></p>
 
-
  <br>
 
-
<br>
 
-
  <p class="texteprotocol"><a href="https://2013.igem.org/Team:INSA_Toulouse/contenu/lab_practice/notebook/protocols/charac_recomb">In vitro recombinase characterization protocol</a></p>
 
-
  <br>
 
-
<img style="width:20px"  src="https://static.igem.org/mediawiki/2013/2/23/Top_arrow.png"class="imgcontent2" /><a href="https://2013.igem.org/Team:INSA_Toulouse/contenu/lab_practice/results">Back to the top</a></p>
 
-
  <br>
 
-
  <br>
 
-
  </div>
 
-
</div>
 
-
<div class="accordeon">
+
<p class="texte">In this case as we consider our system as a dirac impulsion system, we cannot be focused on the concentration value (because C(0;0)-> ∞). That is why here, we are working with normalized concentration value. The point of interest with this model is the evolution of the concentration in time and space and also the determination of the diffusion coefficient D.  
-
+
We tested different diffusivity coefficient to find which one allow the model to fit better with the experimentation. We found that coefficient of diffusivity of AHL into LBagar medium is around: D = 1.10-8 m²/s
-
  <h2 class="faq" title="Click to open the FAQ">  In vivo</h2>
+
-
  <div class="infos">
+
-
  <img style="width:340px; float:left;" src="https://static.igem.org/mediawiki/2013/2/20/XOR1_petit.jpg" class="imgcontent" />
+
-
  <img style="width:340px; float:right;" src="https://static.igem.org/mediawiki/2013/6/6b/XOR1_bio_80.jpg" class="imgcontent" />
+
-
<div class="clear"></div>
+
-
  <img style="width:340px; float:left;" src="https://static.igem.org/mediawiki/2013/7/72/Test_carac.jpg" class="imgcontent" />
+
-
  <img style="width:340px; float:right;" src="https://static.igem.org/mediawiki/2013/7/78/Graph.jpg" class="imgcontent" />
+
-
<div class="clear"></div>
+
-
  <p class="texte"><i>Description des conditions d'expérimentation</i></p>
+
-
  <br>
+
On this 1st chart, we can see for a given distance from the petri dish center the evolution of the concentration. Close to the center the concentration increase really fast and goes down more slowly. More the radius is important more the concentration increase is weak.
-
<br>
+
</p>
-
  <p class="texteprotocol"><a href="https://2013.igem.org/Team:INSA_Toulouse/contenu/lab_practice/notebook/protocols/charac_recomb">In vitro recombinase characterization protocol</a></p>
+
<img style="width:500px" src="https://static.igem.org/mediawiki/2013/2/28/Analytical_fig_1.PNG" class="imgcontentcaption"/>
-
  <br>
+
-
<img style="width:20px" src="https://static.igem.org/mediawiki/2013/2/23/Top_arrow.png"class="imgcontent2" /><a href="https://2013.igem.org/Team:INSA_Toulouse/contenu/lab_practice/results">Back to the top</a></p>
+
-
  <br>
+
-
  <br>
+
-
  </div>
+
-
</div>
+
 +
<p class="textecaption"><i>Figure 7: Evolution of concentration with time for analytic solution.</i></p>
-
<h3 class="title3">Blue Light Sensor</h3>
+
<p class="texte">On this second chart we can see at different time the concentration profile along the petri dish. This graph is relevant to compare at different time how the concentration profile is. For instance at 70min the concentration is still high at r=0 but AHL reached 25 mm, whereas at 20min at r=0 the concentration is 2 times higher but the AHL only reached 10mm.
 +
</p>
 +
<img style="width:500px" src="https://static.igem.org/mediawiki/2013/3/38/Analytical_fig_2.PNG" class="imgcontentcaption"/>
 +
<p class="textecaption"><i>Figure 8: Evolution of concentration with radius for analytic solution.</i></p>
-
<div class="accordeon">
+
<p class="texte">This model fit well in term of evolution with our experimentation. Thanks to this model we can approximately predict the diffusion of AHL into the LB agar. But we have to be careful here because we don’t have the real concentration values and for high time the analytical model isn’t corresponding to the reality.
 +
</p>
-
  <h2 class="faq" title="Click to open the FAQ">  In vitro</h2>
+
<h3 class="title3">Numerical Model</h3>
-
  <div class="infos">
+
-
  <img style="width:340px; float:left;" src="https://static.igem.org/mediawiki/2013/2/20/XOR1_petit.jpg" class="imgcontent" />
+
-
  <img style="width:340px; float:right;" src="https://static.igem.org/mediawiki/2013/6/6b/XOR1_bio_80.jpg" class="imgcontent" />
+
-
<div class="clear"></div>
+
-
  <img style="width:340px; float:left;" src="https://static.igem.org/mediawiki/2013/7/72/Test_carac.jpg" class="imgcontent" />
+
-
  <img style="width:340px; float:right;" src="https://static.igem.org/mediawiki/2013/7/78/Graph.jpg" class="imgcontent" />
+
-
<div class="clear"></div>
+
-
  <p class="texte"><i>Description des conditions d'expérimentation</i></p>
+
-
  <br>
 
-
<br>
 
-
  <p class="texteprotocol"><a href="https://2013.igem.org/Team:INSA_Toulouse/contenu/lab_practice/notebook/protocols/charac_recomb">In vitro recombinase characterization protocol</a></p>
 
-
  <br>
 
-
<img style="width:20px"  src="https://static.igem.org/mediawiki/2013/2/23/Top_arrow.png"class="imgcontent2" /><a href="https://2013.igem.org/Team:INSA_Toulouse/contenu/lab_practice/results">Back to the top</a></p>
 
-
  <br>
 
-
  <br>
 
-
  </div>
 
-
</div>
 
-
<div class="accordeon">
+
<p class="texte">The last step of our modeling was to solve on a numerical way our diffusion problem.
-
+
The aim was to solve the same differential equation presented in the analytical solution part. But here as we solved it with a computer we could use the right boundary condition, and also added a reaction term.
-
  <h2 class="faq" title="Click to open the FAQ">  In vivo</h2>
+
Therefore we developed a numerical solution of AHL diffusion into LB agar medium with the software Comsol. We just needed to enter all the physical parameter of our petri dish and the AHL diffusivity.
-
  <div class="infos">
+
-
  <img style="width:340px; float:left;" src="https://static.igem.org/mediawiki/2013/2/20/XOR1_petit.jpg" class="imgcontent" />
+
-
  <img style="width:340px; float:right;" src="https://static.igem.org/mediawiki/2013/6/6b/XOR1_bio_80.jpg" class="imgcontent" />
+
-
<div class="clear"></div>
+
-
  <img style="width:340px; float:left;" src="https://static.igem.org/mediawiki/2013/7/72/Test_carac.jpg" class="imgcontent" />
+
-
  <img style="width:340px; float:right;" src="https://static.igem.org/mediawiki/2013/7/78/Graph.jpg" class="imgcontent" />
+
-
<div class="clear"></div>
+
-
  <p class="texte"><i>Description des conditions d'expérimentation</i></p>
+
-
  <br>
+
We can see on this first animation the diffusion of AHL into a petri dish with colonies but without reaction term. We note that the concentration of AHL becomes progressively homogeneous in the medium. This model is closest to the reality than the analytical one because here the boundary conditions are the experimental boundary condition:
-
<br>
+
C(0,0)=cste
-
  <p class="texteprotocol"><a href="https://2013.igem.org/Team:INSA_Toulouse/contenu/lab_practice/notebook/protocols/charac_recomb">In vitro recombinase characterization protocol</a></p>
+
C(r=R,t->∞)= cste
-
  <br>
+
</p>
-
<img style="width:20px"  src="https://static.igem.org/mediawiki/2013/2/23/Top_arrow.png"class="imgcontent2" /><a href="https://2013.igem.org/Team:INSA_Toulouse/contenu/lab_practice/results">Back to the top</a></p>
+
<img src="https://static.igem.org/mediawiki/2013/c/c8/Ahl_diffusion3.gif" class="imgcontentcaption"/>
-
  <br>
+
-
  <br>
+
-
  </div>
+
-
</div>
+
 +
<center><p class="textecaption"><i>Figure 9: Diffusion of AHL in LBagar medium with numerical solution.</i></p></center>
 +
<p class="texte">On these second and third animations we tried to simulate what could be our final system with AHL diffusion from a well 1 to other wells. These following two animations are complementary. The first shows the diffusion of the AHL from well 1, the second allows us to visualize the reach of the AHL in wells 2 and 3.
 +
</p>
-
<h3 class="title3">Pol T7</h3>
+
<img src="https://static.igem.org/mediawiki/2013/2/24/Ahl_diffusion_syst_puits1.gif" class="imgcontentcaption"/>
 +
<center><p class="textecaption"><i>Figure 10: Diffusion of AHL in LBagar medium with numerical solution from well 1.</i></p></center>
-
<div class="accordeon">
+
<img src="https://static.igem.org/mediawiki/2013/0/0a/Detection_ahl_diffusion_syst_puits1.gif" class="imgcontentcaption"/>
-
  <h2 class="faq" title="Click to open the FAQ">   In vitro</h2>
+
<center><p class="textecaption"><i>Figure 11: Reception of AHL in well 2 and 3.</i></p></center>
-
  <div class="infos">
+
-
  <img style="width:340px; float:left;" src="https://static.igem.org/mediawiki/2013/2/20/XOR1_petit.jpg" class="imgcontent" />
+
-
  <img style="width:340px; float:right;" src="https://static.igem.org/mediawiki/2013/6/6b/XOR1_bio_80.jpg" class="imgcontent" />
+
-
<div class="clear"></div>
+
-
  <img style="width:340px; float:left;" src="https://static.igem.org/mediawiki/2013/7/72/Test_carac.jpg" class="imgcontent" />
+
-
  <img style="width:340px; float:right;" src="https://static.igem.org/mediawiki/2013/7/78/Graph.jpg" class="imgcontent" />
+
-
<div class="clear"></div>
+
-
  <p class="texte"><i>Description des conditions d'expérimentation</i></p>
+
-
  <br>
+
<p class="texte">We can note that the AHL easily reached the well 2, but also 3 after some time. The passage of the AHL from a well n to well n+1 without reaching the point n+2 is really a key point. It is certainly difficult to implement such a system. In addition, it is imperative that the production of AHL is not continuous, because the concentration in the petri reach all the wells. We need a short pulse in time for transferring the AHL only in well 2. It also requires that the AHL is consumed in well 2 to limit the diffusion in well 3.
-
<br>
+
</p>
-
  <p class="texteprotocol"><a href="https://2013.igem.org/Team:INSA_Toulouse/contenu/lab_practice/notebook/protocols/charac_recomb">In vitro recombinase characterization protocol</a></p>
+
-
  <br>
+
-
<img style="width:20px"  src="https://static.igem.org/mediawiki/2013/2/23/Top_arrow.png"class="imgcontent2" /><a href="https://2013.igem.org/Team:INSA_Toulouse/contenu/lab_practice/results">Back to the top</a></p>
+
-
  <br>
+
-
  <br>
+
-
  </div>
+
-
</div>
+
-
<div class="accordeon">
 
-
 
-
  <h2 class="faq" title="Click to open the FAQ">  In vivo</h2>
 
-
  <div class="infos">
 
-
  <img style="width:340px; float:left;" src="https://static.igem.org/mediawiki/2013/2/20/XOR1_petit.jpg" class="imgcontent" />
 
-
  <img style="width:340px; float:right;" src="https://static.igem.org/mediawiki/2013/6/6b/XOR1_bio_80.jpg" class="imgcontent" />
 
-
<div class="clear"></div>
 
-
  <img style="width:340px; float:left;" src="https://static.igem.org/mediawiki/2013/7/72/Test_carac.jpg" class="imgcontent" />
 
-
  <img style="width:340px; float:right;" src="https://static.igem.org/mediawiki/2013/7/78/Graph.jpg" class="imgcontent" />
 
-
<div class="clear"></div>
 
-
  <p class="texte"><i>Description des conditions d'expérimentation</i></p>
 
-
 
-
  <br>
 
-
<br>
 
-
  <p class="texteprotocol"><a href="https://2013.igem.org/Team:INSA_Toulouse/contenu/lab_practice/notebook/protocols/charac_recomb">In vitro recombinase characterization protocol</a></p>
 
-
  <br>
 
-
<img style="width:20px"  src="https://static.igem.org/mediawiki/2013/2/23/Top_arrow.png"class="imgcontent2" /><a href="https://2013.igem.org/Team:INSA_Toulouse/contenu/lab_practice/results">Back to the top</a></p>
 
-
  <br>
 
-
  <br>
 
-
  </div>
 
</div>
</div>
-
 
-
 
-
<h3 class="title3">General inductor</h3>
 
-
 
-
<div class="accordeon">
 
-
 
-
  <h2 class="faq" title="Click to open the FAQ">  In vivo</h2>
 
-
  <div class="infos">
 
-
 
-
<img src="https://static.igem.org/mediawiki/2013/d/d4/General_inducer_notebook_-_680px.png" class="imgcontent" />
 
-
 
-
  <p class="texte">The couple TetR-pTet system construction is a first step to characterize the entire system. A constitutive promoter (BBa_J23116) was assemble to tetR and then assemble to pTet-rbs-RFP-term (Bba_I13521). pTet is a regulator constitutively ON that expresses the mRFP1 protein. TetR is an inducer that binds to pTet promoter and thus, represses expression the downstream system. Supply of tetracycline or its analog aTc (anhydrotetracycline) is known to bind to tetR and invert the operation (inhibits expression of mRFP in this case).<br>
 
-
<br>
 
-
After 18 hours, clones containing this assembly (BBa_J23116-TetR-pTet-RFP) show a leaky basal expression of mRFP. We suppose that the promoter was too weak to express TetR in large quantity. Assembly of a stronger promoter could improve the system and lock the response to an ON/OFF response. <br>
 
-
<br>
 
-
Besides, an experience was done to analyze the effect of the aTc inducer. Result show a visible induction of the red fluorescent protein expression by addition of aTC (60 ng/mL).</p>
 
-
 
-
<img src="https://static.igem.org/mediawiki/2013/e/e1/Induct_gen_pfaible.png" class="imgcontent" />
 
-
 
-
  <br>
 
-
  <br>
 
-
<img style="width:20px"  src="https://static.igem.org/mediawiki/2013/2/23/Top_arrow.png"class="imgcontent2" /><a href="https://2013.igem.org/Team:INSA_Toulouse/contenu/lab_practice/results">Back to the top</a></p>
 
-
  <br>
 
-
  <br>
 
-
  </div>
 
-
</div>
 
-
 
-
 
-
 
-
 
-
 
-
 
-
 
-
 
-
 
-
</div>
 
<div class="clear"></div>
<div class="clear"></div>

Revision as of 12:22, 4 October 2013

logo


Modelling Results

Experimentation

We realized many experiences in order to measure how AHL diffuse into agar medium. We used a particular bacteria, Chromobacterium violaceum, which is capable to detect presence of AHL by producing a purple pigment, the violacein.

Figure 4 shows petri dishes containing eight colonies of bacteria placed at 5, 10, 15, 20, 25, 30, 35 and 40 mm from the center of the box. With this experience we can track the diffusion of the AHL. Also we can see that the colonies are in a spiral disposition. This typical disposition allow us to avoid the problem of utilisation of AHL of the n-1 colony to the n colony.

Figure 4: Photographs at 25h of petri dishes containing each 8 Chromobacterium violaceum colonies from 5 mm to 40 mm.

Figure 5 represent the evolution of AHL diffusion versus time.

Figure 5: Evolution of AHL diffusion into petri dish.

With this experience we can represent on figure 6 the surface of AHL diffusion (surface is a disk) versus time in order to find the coefficient of diffusion of AHL into LBagar. The directing coefficient of the regression line give us the order of magnitude of coefficient of diffusion, we find an order of 10-8 m²/s. This coefficient is an important value to develop analytical and numerical modelling.

Figure 6: Determination of coefficient of diffusion of AHL into LBagar medium.

Analytical Model

After the creation of our first model above which allowed us to find relevant answer for our system, we thought that it term of modeling we weren’t really satisfied. That is why we developed a new model based on equation of continuity in cylindrical coordinates. The general equation in our case is the following. Equation of continuity:

Bird, R. B., Stewart, W. E., & Lightfoot, E. N. (1960). Transport phenomena (Vol. 2). New York: Wiley.

In our case we have: No reaction No evolution in z and θ direction dwA/dr=0 because of the mass equation (Dρ/Dt=0) with ρ=cste After simplification:

After simplification and changing the mass in concentration we obtained:

To solve this equation we first thought to use the variables separation but we faced different issues, but we found after some more research a new solution which fit better with our system. This solution is corresponding to a Dirac impulsion. This is not the perfect solution but this is the closest analytical solution to our system. The only difference with our system is that the boundary condition for C(0;0), is not exactly the same. For the Dirac impulsion C(0;0)->∞, but this approximation can be acceptable for our system considering that our AHL concentration is high at the beginning of the experiment and the loading is really small.This is our analytical solution:

In this case as we consider our system as a dirac impulsion system, we cannot be focused on the concentration value (because C(0;0)-> ∞). That is why here, we are working with normalized concentration value. The point of interest with this model is the evolution of the concentration in time and space and also the determination of the diffusion coefficient D. We tested different diffusivity coefficient to find which one allow the model to fit better with the experimentation. We found that coefficient of diffusivity of AHL into LBagar medium is around: D = 1.10-8 m²/s On this 1st chart, we can see for a given distance from the petri dish center the evolution of the concentration. Close to the center the concentration increase really fast and goes down more slowly. More the radius is important more the concentration increase is weak.

Figure 7: Evolution of concentration with time for analytic solution.

On this second chart we can see at different time the concentration profile along the petri dish. This graph is relevant to compare at different time how the concentration profile is. For instance at 70min the concentration is still high at r=0 but AHL reached 25 mm, whereas at 20min at r=0 the concentration is 2 times higher but the AHL only reached 10mm.

Figure 8: Evolution of concentration with radius for analytic solution.

This model fit well in term of evolution with our experimentation. Thanks to this model we can approximately predict the diffusion of AHL into the LB agar. But we have to be careful here because we don’t have the real concentration values and for high time the analytical model isn’t corresponding to the reality.

Numerical Model

The last step of our modeling was to solve on a numerical way our diffusion problem. The aim was to solve the same differential equation presented in the analytical solution part. But here as we solved it with a computer we could use the right boundary condition, and also added a reaction term. Therefore we developed a numerical solution of AHL diffusion into LB agar medium with the software Comsol. We just needed to enter all the physical parameter of our petri dish and the AHL diffusivity. We can see on this first animation the diffusion of AHL into a petri dish with colonies but without reaction term. We note that the concentration of AHL becomes progressively homogeneous in the medium. This model is closest to the reality than the analytical one because here the boundary conditions are the experimental boundary condition: C(0,0)=cste C(r=R,t->∞)= cste

Figure 9: Diffusion of AHL in LBagar medium with numerical solution.

On these second and third animations we tried to simulate what could be our final system with AHL diffusion from a well 1 to other wells. These following two animations are complementary. The first shows the diffusion of the AHL from well 1, the second allows us to visualize the reach of the AHL in wells 2 and 3.

Figure 10: Diffusion of AHL in LBagar medium with numerical solution from well 1.

Figure 11: Reception of AHL in well 2 and 3.

We can note that the AHL easily reached the well 2, but also 3 after some time. The passage of the AHL from a well n to well n+1 without reaching the point n+2 is really a key point. It is certainly difficult to implement such a system. In addition, it is imperative that the production of AHL is not continuous, because the concentration in the petri reach all the wells. We need a short pulse in time for transferring the AHL only in well 2. It also requires that the AHL is consumed in well 2 to limit the diffusion in well 3.