Team:UFMG Brazil/Cardbio
From 2013.igem.org
(Difference between revisions)
(→Our Design) |
(→IMA) |
||
Line 83: | Line 83: | ||
One of the main aspects of acute coronary syndrome is myocardial ischemia. It occurs when blood flow to heart muscle is decreased by a partial or complete blockage of coronary arteries, reducing oxygen supply. If the ischemia is detected early, it can be reversed with no myocardial permanent impairement. However, if it is prolonged, there will be cellular necrosis and myocardial infarction. Currently, the only strategy for detecting ischemia is to detect ST segment changes on the electrocardiogram (ECG) but with only around 50% sensitivity. There is, therefore, a need for an early diagnosis for myocardial ischemia so it can be treated in time. | One of the main aspects of acute coronary syndrome is myocardial ischemia. It occurs when blood flow to heart muscle is decreased by a partial or complete blockage of coronary arteries, reducing oxygen supply. If the ischemia is detected early, it can be reversed with no myocardial permanent impairement. However, if it is prolonged, there will be cellular necrosis and myocardial infarction. Currently, the only strategy for detecting ischemia is to detect ST segment changes on the electrocardiogram (ECG) but with only around 50% sensitivity. There is, therefore, a need for an early diagnosis for myocardial ischemia so it can be treated in time. | ||
- | Serum albumin is the most abundant protein in human blood. It is responsible for binding, transporting and distributing a number of small molecules and metallic ions, such as Fe2+, Ni2+, Cd2+ e Co2+. Studies conducted by Bar-Or et al., revealed that albumin extracted from patients with ischemia in cardiac tissues presented reduced cobalt binding. This reduction | + | Serum albumin is the most abundant protein in human blood. It is responsible for binding, transporting and distributing a number of small molecules and metallic ions, such as Fe2+, Ni2+, Cd2+ e Co2+. Studies conducted by Bar-Or et al., revealed that albumin extracted from patients with ischemia in cardiac tissues presented reduced cobalt binding. This reduction was considered to be likely caused due to the loss of two aminoacids in the albumin N-terminal – Asp1 e Ala2 – which constitutes an important binding site for metals in the protein (Sadler et al., 1994) and are known for being particularly susceptible to degradation, comparing to other N-terminal residues in other species (Chan et al., 1995). Recent studies (Oh et al., 2012; Lu et al., 2012) suggests, however, that the reduced albumin affinity for cobalt occurs not by the N-terminal damage, but by the binding of free fatty acids, which are increased in ischemic cases (Apple et al., 2004), in this portion of the protein, obstructing the cobalt binding site. Therefore, IMA detection could be a measure of free fatty acids in blood, which have been recently pointed as good biomarkers for prognosis of acute coronary syndrome (Breitling et al., 2011). |
A colorimetric test for ischemia modified albumin (IMA) was developed (Bar-Or et al., 2000), based on the measure of free cobalt after the addition of patient sera with ischemia suspicion. Studies comparing the clinical use of this cobalt binding assay (CBA) with other biomarkers point to a high sensibility for ischemia detection, but with low specificity (Bhagavan et al., 2003; Christenson et al., 2001). This assay has a high negative predictive value and can be used in initial triage in clinic, and was approved by FDA (Foods and Drugs Administration) for detection/exclusion of acute myocardial infarction in 2003. Therefore, the Cardbio project chose IMA as a biomarker to be detected by its construction. Associated with other more specific biomarkers, IMA detection can improve the sensibility of our test and it also accomplishes our goal to detect the early alterations caused by acute coronary syndrome instead of diagnosing late events that cannot be reversed. | A colorimetric test for ischemia modified albumin (IMA) was developed (Bar-Or et al., 2000), based on the measure of free cobalt after the addition of patient sera with ischemia suspicion. Studies comparing the clinical use of this cobalt binding assay (CBA) with other biomarkers point to a high sensibility for ischemia detection, but with low specificity (Bhagavan et al., 2003; Christenson et al., 2001). This assay has a high negative predictive value and can be used in initial triage in clinic, and was approved by FDA (Foods and Drugs Administration) for detection/exclusion of acute myocardial infarction in 2003. Therefore, the Cardbio project chose IMA as a biomarker to be detected by its construction. Associated with other more specific biomarkers, IMA detection can improve the sensibility of our test and it also accomplishes our goal to detect the early alterations caused by acute coronary syndrome instead of diagnosing late events that cannot be reversed. |
Revision as of 13:47, 14 October 2013