Team:British Columbia/Modeling

From 2013.igem.org

(Difference between revisions)
Line 19: Line 19:
Where $E(X_i)$ is the statistically expected infected bacterial populations. We define the rate of change in population in () and ().
Where $E(X_i)$ is the statistically expected infected bacterial populations. We define the rate of change in population in () and ().
\begin{align}
\begin{align}
-
\frac{dX_u}{dt} = \mu_u + k_d
+
&\frac{dX_u}{dt} = \big(\mu_u + k_{d_u}\big)X_u\\
 +
&\frac{dX_i}{dt} = \big(\mu_i + k_{d_i}\big)X_i
 +
\end{align}
 +
To create a more complete model, we have chosen to model the bacteriophage population as well.
 +
\begin{align}
 +
P = X_i \beta ^{\frac{\tau}{LT}}
 +
\end{align}
 +
However, due to the low rate of secretion of our studied populations, we can redefine our phage population as a stepwise function:
 +
\begin{align}
 +
\frac{dP}{dt} = E(X_i)\beta, &for lysis
 +
\end{align}
 +
 
 +
The multiplicity of infection (MOI) is defined as the ratio of bacteriophages to bacterial cells.
 +
\begin{align}
 +
MOI = \frac{P}{X}
\end{align}
\end{align}

Revision as of 21:23, 31 August 2013

iGEM Home

Reaction Kinetics: - Modelling the production of cinnamaldehyde, vanillin and caffeine production


Population dynamics: - Modelling the population of a bacteria in a batch reactor with phage dependency

\begin{align} \frac{dX}{dt} = \frac{dX_u}{dt} + \frac{dX_i}{dt} + \Gamma \end{align} Where $\frac{dX}{dt}$ is rate of change in bacteria population over time, $\frac{dX_u}{dt}$ and $\frac{dX_i}{dt}$ are the rates of change in the uninfected and infected populations respectively. $\Gamma$ is defined as a stepwise function. \begin{align} \Gamma &= - E(X_i), \ during \ phage \ caused \ lysis\\ &= 0, \ \ \ \ \ \ \ \ \ \ \ \ \ \ otherwise \end{align} Where $E(X_i)$ is the statistically expected infected bacterial populations. We define the rate of change in population in () and (). \begin{align} &\frac{dX_u}{dt} = \big(\mu_u + k_{d_u}\big)X_u\\ &\frac{dX_i}{dt} = \big(\mu_i + k_{d_i}\big)X_i \end{align} To create a more complete model, we have chosen to model the bacteriophage population as well. \begin{align} P = X_i \beta ^{\frac{\tau}{LT}} \end{align} However, due to the low rate of secretion of our studied populations, we can redefine our phage population as a stepwise function: \begin{align} \frac{dP}{dt} = E(X_i)\beta, &for lysis \end{align}

The multiplicity of infection (MOI) is defined as the ratio of bacteriophages to bacterial cells. \begin{align} MOI = \frac{P}{X} \end{align}