Team:TU-Munich/Results/Moss
From 2013.igem.org
Growing Physcomitrella patens on solid materials
For implementation of the PhyscoFilter it is elementary to know about the mosses growth behavior on different surfaces. We therefore tried 5 different materials and came to the conclusion that the moss grows very well on all of them, but especially felt material would suit our plans for implementing the filter system in form of a remediation raft since the moss can easily cling to the fibers, which are also dense enough to prevent the moss from being washed away. Also the spongy properties of felt make it an ideal surface for the plant as it ensures a constant supply of water. The second best material is probably agar or metal grid on agar, but this has the disadvantage of being washed away gradually.
Determination of growth rates for different liquid culture forms
Tolerance to relevant environmental pollutants and toxins
To test whether and how the moss reacts to toxins and pollutants, which can occur in waste and surface water and which our PhyscoFilter should remove, wild type plants were incubated in serial dilutions of the toxic substances. As a negative control distilled water was used. After 4, 7, 10 and 19 days the plants were screened with a light microscope, where one could easily differentiate between alive and dead plants. The latter occurred in two different phenotypes, one appearing transparent (dead moss 1) because it lost its chlorophyll, the other black (dead moss 2).
Substance | Application | Concentration |
---|---|---|
Ampicillin | Antibiotic agar plate | 0.1 g/L[http://www.eeescience.utoledo.edu/Faculty/Sigler/Von_Sigler/LEPR_Protocols_files/Working%20concentrations%20and%20stock%20solutions.pdf[1]] |
Chloramphenicol | Antibiotic agar plate | 0.025 g/L[http://www.eeescience.utoledo.edu/Faculty/Sigler/Von_Sigler/LEPR_Protocols_files/Working%20concentrations%20and%20stock%20solutions.pdf[1]] |
Kanamycin | Antibiotic agar plate | 0.05 g/L[http://www.eeescience.utoledo.edu/Faculty/Sigler/Von_Sigler/LEPR_Protocols_files/Working%20concentrations%20and%20stock%20solutions.pdf[1]] |
Tetracycline | Antibiotic agar plate | 0.01 g/L[http://www.eeescience.utoledo.edu/Faculty/Sigler/Von_Sigler/LEPR_Protocols_files/Working%20concentrations%20and%20stock%20solutions.pdf[1]] |
Geneticin (G418) | Antibiotic agar plate (for moss selection) | 12.5 mg/L[http://www.plant-biotech.net[2]] |
Diclofenac | 1 tablet (25-50 mg) dissolved in 6 L (blood circuit) | 4.2-8.3 mg/L |
NaCl | Sea water | 3.5 g/L |
Catechol | Death of Arabidopsis | 55 mg/L[http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1586047/[3]] |
Erythromycin | 1 tablet (500 mg) dissolved in 6 L (blood circuit) | 0.08 g/L |
The result of this toxicity assay is, that wild type plants are not negatively affected by waste water treatment plant (WWTP) effluents, which were sampled from the local WWTPs Großlappen (waste water 1) and Garching (waste water 2). So the filter system could work effectively placed in the effluent stream of WWTPs or on surface water. However, sea water seems to influence the vitality of the moss, so the implementation of the PhyscoFilter in salt water is not recommended. Furthermore we can conclude that substances the genetically modified moss should degrade (Erythromycin, Catechol) or accumulate (Diclofenac) only affect the plant - if they do at all - at concentrations much higher than they occur naturally (see table 1). Also the assay indicates that it is possible to grow the plant on agar plates with often used antibiotics (Tetracycline, Ampicillin, Chloramphenicol, Kanamycin), since the working concentration has no influence on the moss. This can be very useful to prevent bacterial contamination of plates. As expected G418 shows toxic influence on wild type moss and can therefore be used as selection substance for transformed plants, though it takes a few days to take effect.
References:
http://www.eeescience.utoledo.edu/Faculty/Sigler/Von_Sigler/LEPR_Protocols_files/Working concentrations and stock solutions.pdf University of Toledo, Department of Environmental Sciences
http://www.plant-biotech.net plant-biotech.net
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1586047/ Liao,Y. et al, 2006 Liao,Y. et al, (2006). The Key Role of Chlorocatechol 1,2-Dioxygenase in Phytoremoval and Degradation of Catechol by Transgenic Arabidopsis. Plant Physiology, 142(2): 620–628.
AutoAnnotator:
Follow us:
Address:
iGEM Team TU-Munich
Emil-Erlenmeyer-Forum 5
85354 Freising, Germany
Email: igem@wzw.tum.de
Phone: +49 8161 71-4351