Team:Paris Saclay/Modeling

From 2013.igem.org

Revision as of 13:38, 29 September 2013 by Zyi (Talk | contribs)

Contents

Modeling

"La modélisation, c'est comme le sexe, plus y'a d'inconnues, plus c'est chaud." ---damdam_du_91

Before you start, maybe those words could make you understand more quickly our project.

What do we model?

This modeling is about the simulation of FNR aero/anaerobic regulation system which we have successfully achieved in our experiments. The second part of our experiment: the PCBs sensor system is not touched in the modeling.

The FNR aero/anaerobic regulation system, briefly, we try to rebuild mathematically a system which can simulate the alternate expression of FNR in aerobic or anaerobic situation, from the translation of fnr to the production of reporter protein.

What’s our purpose for this modeling?

The main aim of our modeling is recreate the aero/anaerobic reporter protein expression system. By alternating the oxygen concentration, activated or inactivated FNR combine (or not) with potential sensor gene sequence and make blue or red color. Our job is to see if we can observe the alternating red and blue curve when we change the oxygen condition.

How do we model?

As the research of FNR regulation system is a well-studied territory, we found some excellent scientific paper in library especially [http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2867928/ Regulation of Aerobic to Anaerobic Transitions by the FNR cycle in Escherichia coli by Dean A.Tolla and Michael A.Savageau]. This is a differential equation model. And in our modeling we decided to redo what they have done but use a different method: a stochastic system created by new modeling tool: Hsim. Hsim is a stochastic automation simulator, it simulate chemical or enzymatic reactions between molecules and based on reactions it can simulate whole system.


3rd step: HSim on a web simulator

Damir has conceived and implemented the web simulations

We provide 2 web versions of the HSIM simulator. Each of them implements a different set of rules. The "Simple simulation" describes the following reactions:

  • translation of Pfnr gene into FNR protein (FNR without Fe)
  • dimerisation of 4Fe-FNR (action of Ise protein)
  • oxydation: in aerobic conditions, oxygen inactivates FNR but cell continues to reactivate it (action of Ise protein)
  • degradation of each kind of FNR (FNR without Fe, FNR activated, and FRN inactivated), a green protein, and a red protein (action of ClpXP

protein)

  • activation/inactivation of a gene under a repressor promotor (green) and production or not of the cognate protein
  • activation/inactivation of a gene under an activator promotor (red) and production or not of the cognate protein

We used the simple simulation to explore different combinations of initial values. The complex simulation itemizes more rules than the simple simulation. en cours

Here you will find our configuration files to launch HSIM: links.

==How to launch the simulations?== When simulation is launched, curve of molecule quantities appear with time. The "START/PAUSE" and "RESET" buttons give control to the simulation time. You may change the oxygen quantities with the "O2" panel.

Oxygen sensing system

Simple simulation

Loading simulation...

Complex simulation

Loading simulation...


Results and discussion

en cours


Writing by Zhou and Damir