Team:Bielefeld-Germany/Labjournal/Analytics

From 2013.igem.org

(Difference between revisions)
m
m
Line 14: Line 14:
     $(".sds").toggle();
     $(".sds").toggle();
   });
   });
-
   $(".tecan_headline").click(function(){
+
   $(".hexadecan_headline").click(function(){
-
     $(".tecan").toggle();
+
     $(".hexadecan").toggle();
   });
   });
   $(".nadh_headline").click(function(){
   $(".nadh_headline").click(function(){
Line 98: Line 98:
<p> • Concentration calculation by NADH calibration curve</p>
<p> • Concentration calculation by NADH calibration curve</p>
 +
</div>
 +
<div class="hexadecan_headline">
 +
<a name="hexadecan"><span style="color:#ff6600; padding-left=22px">[Hexadecan Assay]</span></a>
</div>
</div>
-
<!-- TECAN
+
<div class="hexadecan" >
-
<div class="tecan_headline">
+
This assay has been used to measure cell membrane hydrophobicity.
-
<a name="tecan"><span style="color:#ff6600; padding-left=22px">[Fluorescence measurements]</span></a>
+
<br><b><u>Protocol</u></b>
-
</div>
+
 
-
<div class="tecan" >
+
<p> • Inoculate an overnight culture (30 mL with 1 mL of pre-culture) </p>
-
<br><b><u>Fluorescence measurements </u></b>
+
<p> • Centrifugate (5 min at 4000 g) of 2 mL overnight culture (OD 4-6)</p>
 +
<p> • Discard supernatant and wash pellet 3 times with 1 mL of PBS buffer</p>
 +
<p> • Resuspend pellet in 1 mL 0,9% NaCl and measurement of OD600</p>
 +
<p> • Add x μL of washed cells to 0,9% NaCl for a final volume of 3 mL . Final OD600 should be approximately 0,3 (denoted as A0, calculate exact value)</p>
 +
<p> • Add 3 mL Hexadecan and vortex for 60 sec</p>
 +
<p> • Incubation for 15 min</p>
 +
<p> • Discard the upper organic phase and measure OD600 of the aqueous phase (denoted as A)</p>
 +
<p> • Hydrophobicity can be calculated using the equation: affinity [%] = 100 x [1 – (A/A0)]</p>
-
<p>
 
-
Measuring of mRFP with Tecan Infinite® M200 platereader</p>
 
-
<p>-Take at least 500 µL sample for each measurement (200 µL is needed for one measurement) so you can perform a repeat determination
 
-
- Freeze biological samples at -80 °C for storage, keep cell-free at 4 °C in the dark
 
-
- To measure the samples thaw at room temperature and fill 200 µL of each sample in one well of a black, flat bottom 96 well microtiter plate (perform at least a repeat determination)
 
-
- Measure the fluorescence in a platereader (we used a Tecan Infinite® M200 platereader) with following settings:
 
-
20 sec orbital shaking (1 mm amplitude with a frequency of 87.6 rpm)
 
-
- Measurement mode:
 
-
Top Excitation: 584 nm
 
-
Emission: 620 nm
 
-
Number of reads: 25
 
-
Manual gain: 100
 
-
Integration time: 20 µs
 
-
</p>
 
<br>
<br>
<br>
<br>
</div>
</div>
-
END TECAN -->
+
 
<!--
<!--

Revision as of 11:21, 26 September 2013







Analytics


Sodium dodecyl sulfate polyacrylamide gel electrophoresis


Pouring the polyacrylamide gel

- Make a master mix for the stacking and separating gel without adding ammonium persulfate and TEMED

- Aliquote 6,5 mL for each separating and 2,5 mL for each stacking gel

- Add ammonium persulfate and TEMED to each separating gel aliquote and pour the solution quickly into your gel casting form. Leave about 2 centimeters below the bottom of the comb for the stacking gel

- Layer isopropanol on top of the ge

- Leave the separating gel at room temperature for >60 minutes to polymerize

- Remove isopropanol and wait until the surface is dry

- Add ammonium persulfate and TEMED to each separating gel aliquote and pour the solution quickly into your gel casting form

- Insert comb without getting bubbles stuck underneath

- Leave the gel at room temperature for >60 minutes to polymerize


For storage:

-Remove sealing and store the gel wrapped in moistened paper towel at 4°C



Preparing the sample

- Mix your protein mixture 4:1 with Laemmli-buffer (30 mL protein solution + 10 mL Laemmli-buffer)

- Heat for 5 minutes at 95 °C



Running the gel

- Remove sealing, put the polymerized gel into gel box and pour SDS running buffer into the negative and positive electrode chamber

- Remove comb without destroying the gel pocket

- Pipet the sample into the gel pockets, adjusting the volume according to the amount of protein in your sample. Make sure to include a lane with molecular weight standards (PageRuler Prestained Protein Ladder™ (Fa. Fermentas)) to determinate the molecular weight of your sample

- Connect the power lead and run the stacking gel with 10 mA until the blue dye front enters the separating gel

- Raise amperage up to 20 mA for running the separating gel

- When the distance of the lowest molecular weight standard lane to the gel end is down to 0.5 cm stop the electrophoresis by turning off the power supply



This method has been used for measurement of intracellular NADH concentration.
Protocol:

• Inoculate an overnight culture (30 mL with 1 mL of pre-culture)

• Centrifugate (5 min at 5000 g) of 6-10 mL overnight culture (OD 4-6), adjust volume between different samples for the approximation of the number of cells

• Discard supernatant and wash pellet 3 times with 1 mL of PBS buffer

• Resuspend pellet in 1 mL PBS buffer

• Cell disruption by Ribolysation (3 x 30 sec at 6500 rpm)

• Centrifugation for 10 min at maximum speed

• Store supernatant at - 20 ° C or direct measurement with Tecan Infinite® M200 platereader


Tecan Infinite® M200 platereader parameters:

• Sample volume = 100 μL clear supernatant

• Excitation = 340 nm

• Emission = 460 nm

• Concentration calculation by NADH calibration curve

This assay has been used to measure cell membrane hydrophobicity.
Protocol

• Inoculate an overnight culture (30 mL with 1 mL of pre-culture)

• Centrifugate (5 min at 4000 g) of 2 mL overnight culture (OD 4-6)

• Discard supernatant and wash pellet 3 times with 1 mL of PBS buffer

• Resuspend pellet in 1 mL 0,9% NaCl and measurement of OD600

• Add x μL of washed cells to 0,9% NaCl for a final volume of 3 mL . Final OD600 should be approximately 0,3 (denoted as A0, calculate exact value)

• Add 3 mL Hexadecan and vortex for 60 sec

• Incubation for 15 min

• Discard the upper organic phase and measure OD600 of the aqueous phase (denoted as A)

• Hydrophobicity can be calculated using the equation: affinity [%] = 100 x [1 – (A/A0)]