Team:Macquarie Australia/Project
From 2013.igem.org
Line 35: | Line 35: | ||
<br><br> | <br><br> | ||
<img src="https://static.igem.org/mediawiki/2013/a/ae/Chloropyllpathway4.jpg" alt="Smiley face" align="right"> | <img src="https://static.igem.org/mediawiki/2013/a/ae/Chloropyllpathway4.jpg" alt="Smiley face" align="right"> | ||
- | <br><br> | + | <br><br> |
<b>Chll1</b> | <b>Chll1</b> | ||
- Magnesium chelatase subunit I | - Magnesium chelatase subunit I | ||
Line 107: | Line 107: | ||
Reduces the geranylgeranyl group to the phytyl group in the side chain of chlorophyll. Plant geranylgeranylhydrogenase (CHL P) reduces free geranylgeranyldiphosphate to phytildiphosphate, which provides the side chain to chlorophylls, tocopherols, and plastoquinones. | Reduces the geranylgeranyl group to the phytyl group in the side chain of chlorophyll. Plant geranylgeranylhydrogenase (CHL P) reduces free geranylgeranyldiphosphate to phytildiphosphate, which provides the side chain to chlorophylls, tocopherols, and plastoquinones. | ||
- | <br><br | + | <br><br> |
<br><br> | <br><br> | ||
<br><br> | <br><br> |
Revision as of 02:17, 20 September 2013
General background information on our project can be found Here.
A seperate
'Results & Characterization' section has been created to show and highlight our successful lab accomplishments, shown
Here.
Here
The iGEM team at Macquarie University are aiming to introduce the genes necessary for chlorophyll production into E.coli. We at Macquarie are confident that we can make scientific strides in the understanding and construction of a photosynthetic bacterium.
Currently we have 2 out of 12 biobricks assembled and sequenced in our system, with work continuing on the remainder.
Production of chlorophyll in E.coli would be the first steps towards the construction of photosystem II, a fundamental aspect of organic energy production. A better understanding of photosystem II opens the door to the production of harnessing green energy.
If successful this would be the first successful production of chlorophyll within non-photosynthetic bacteria.
Chll1
- Magnesium chelatase subunit I
Forms an ATP dependent hexameric ring complex and a complex with the ChlD subunit (probably a double hexameric ring complex) before acting on the protoporphyrin which is bound to the ChlH protein to insert magnesium [PMID: 11469861]. Transcript is light regulated and may be diurnal and/or circadian [PMID: 16228385]; predicted chloroplast targeting sequence amino acids 1-54 by ChloroP.
Chll2
Magnesium chelatase subunit I
forms an ATP dependent hexameric ring complex and a complex with the ChlD subunit (probably a double hexameric ring complex) before acting on the protoporphyrin which is bound to the ChlH protein to insert magnesium [PMID: 11469861]; may have similar function to Arabidopsis CHLI2 gene [PMID: 11842180]; chloroplast targeting signal peptide predicted 1-37 by ChloroP.
ChlD
Magnesium chelatase subunit D
Forms an ATP dependent complex with the ChlI subunit (probably a double hexameric ring complex) before acting on the protoporphyrin which is bound to the ChlH protein to insert magnesium [PMID: 11469861]. Predicted chloroplast targeting sequence amino acids 1-62 by ChloroP.
ChlH
Magnesium chelatase subunit H
chloroplast precursor; Chlamydomonas mutants with defects in this protein are chl1 and brs-1 and result in a brown phenotype [PMID: 11713666; PMID: 4436384]. Orthologous to the bacterial protein BchH [PMID: 9359397]; binds protoporphyrin and is acted upon by the ChlI:ChlD complex for magnesium insertion [PMID: 11469861]; interacts with GUN4 and may be involved in chloroplast signalling: Gene is also known as GUN5 in Arabidopsis thaliana [PMID: 11172074; 12574634]; transcript is light regulated and may be diurnal and/or circadian regulated [PMID: 16228385].
Gun4
Tetrapyrrole-binding protein
In Arabidopsis, GUN4 (Genomes uncoupled 4) is required for the functioning of the plastid mediated repression of nuclear transcription that is involved in controlling the levels of magnesium- protoporphyrin IX. GUN4 binds the product and substrate of Mg-chelatase, an enzyme that produces Mg-Proto, and activates Mg-chelatase. GUN4 is thought to participates in plastid-to-nucleus signaling by regulating magnesium-protoporphyrin IX synthesis or trafficking.
ChlM
Mg protoporphyrin IX S-adenosyl methionine O-methyl transferase
Magnesium-protoporphyrin O-methyltransferase (chlM) [PMID: 12828371; PMID: 12489983; PMID: 4436384]; ChloroP 1.1 predicts cp location
CTH1
Copper target 1 protein
functional variant produced under copper and/or oxygen sufficient conditions [GI:15650866; PMID: 11910013; PMID: 14673103]; CTH1; Mg-protoporphyrin IX monomethyl ester (oxidative) cyclase, aerobic oxidative cyclase; orthologous to Rubrivaxgelatinosus aerobic oxidative cyclase [PMID: 11790744; PMID: 14617630]; predicted chloroplast transit peptide 1-35; Orthologous to CRD1; CHL27B [PMID: 15849308].
Plastocyanin
Chloroplast precursor
pre-apoplastocyanin, PETE [PMID: 2165059; PMID: 8940133]; structure of plastocyanin PDB: 2PLT; mutant = ac208 [PMID: 8463310]
POR
Light-dependent protochlorophyllidereductase
Light-dependent protochlorophyllidereductase, chloroplast precursor; Converts protochlorophyllide to chlorophyllide using NADPH and light as the reductant; Chlamydomonas mutant known as pc-1 has a two-nucleotide deletion within the fourth and fifth codons of this gene giving rise to a premature termination [PMID: 8616232; identical to U36752]
DVR1
3,8-divinyl protochlorophyllidea 8-vinyl reductase
Predicted chloroplast transit peptide 1-58; [PMID: 15695432; PMID: 15849308]
ChlG
Chlorophyllsynthetase
Catalyses the esterification of chlorophyllide with phytyl-pyrophosphate to make chlorophyll
ChlP
Geranylgeranylreductase
Reduces the geranylgeranyl group to the phytyl group in the side chain of chlorophyll. Plant geranylgeranylhydrogenase (CHL P) reduces free geranylgeranyldiphosphate to phytildiphosphate, which provides the side chain to chlorophylls, tocopherols, and plastoquinones.
[Part 2-The Experiments-Part 3-Results]
+ Detailed Gene pathway (Picture + description of each gene)
+ Methods & workflow (How we plan on constructing the gene pathway, and analytical techniques)
+ Condensed results (All genes worked and transformed as predicted...)