Team:OUC-China

From 2013.igem.org

(Difference between revisions)
 
(17 intermediate revisions not shown)
Line 60: Line 60:
   background-color: #FFFFFF;
   background-color: #FFFFFF;
   color: #34495e;
   color: #34495e;
 +
}
 +
a:visited{
 +
  color: #fff;
}
}
/*the nav settings
/*the nav settings
Line 151: Line 154:
   .banner .inner {
   .banner .inner {
 +
 +
     padding: 160px 0 110px;
     padding: 160px 0 110px;
   }
   }
Line 272: Line 277:
   margin: 0 auto;
   margin: 0 auto;
   max-width: 1170px;
   max-width: 1170px;
 +
}
 +
/*footer*/
 +
footer{
 +
  margin-top: 100px;
 +
  background-color: #eceff1;
 +
  color: #bdc1c5;
 +
  font-size: 17px;
 +
  padding: 0;
 +
}
 +
.footer-banner{
 +
  background-color: #34495e;
 +
  color: #58F8D9;
 +
  margin-left: 42px;
 +
  min-height: 286px;
 +
  padding: 0 30px 30px;
 +
}
 +
.footer-banner ul{
 +
  list-style-type: none;
 +
}
 +
.footer-banner ul li{
 +
  border-bottom:1px solid rgba(57, 107, 97, 0.53);
 +
  line-height: 19px;
 +
  padding: 6px 0;
 +
}
 +
.footer-banner a{
 +
  color: #58F8D9;
 +
}
 +
.footer-banner a:hover{
 +
  text-decoration: none;
 +
}
 +
.footer-title{
 +
  margin: 0 0 22px;
 +
  padding-top: 21px;
 +
  color: #1abc9c;
 +
  font-weight: bold;
 +
}
 +
.footerleft a{
 +
  color: #bdc1c5;
 +
}
 +
.footerleft a:visited {
 +
  color: #bdc1c5;
}
}
</style>
</style>
</head>
</head>
-
<body >
+
<body>
<div class="navbar navbar-inverse navbar-fixed-top" role="navigation">
<div class="navbar navbar-inverse navbar-fixed-top" role="navigation">
   <div class="navbar-header">
   <div class="navbar-header">
Line 356: Line 402:
           <div class="inner">
           <div class="inner">
             <h1>WE DID IT !</h1>
             <h1>WE DID IT !</h1>
-
             <p>Constructing an Artificial Organelle in <i>E.coli</i></p>
+
             <p>Constructing an Artificial Organelle(Intracellular Compartment) in <i>E.coli</i></p>
             <a class="btn" href="https://2013.igem.org/Team:OUC-China/Results">learn the story behind this picture</a>
             <a class="btn" href="https://2013.igem.org/Team:OUC-China/Results">learn the story behind this picture</a>
           </div>
           </div>
         </li>
         </li>
-
         <li style="background-image: url('https://static.igem.org/mediawiki/igem.org/7/7d/Cluster.png');">
+
         <li style="background-image: url('https://static.igem.org/mediawiki/2013/7/7d/Cluster.png');">
           <div class="inner">
           <div class="inner">
             <h1>Compression of Metabolic Pathways</h1>
             <h1>Compression of Metabolic Pathways</h1>
Line 376: Line 422:
           </div>
           </div>
         </li>
         </li>
-
         <li style="background-color:#1abc9c;">
+
         <li style="background-image: url('https://static.igem.org/mediawiki/2013/7/75/Ouc-slide4.jpg');">
           <div class="inner">
           <div class="inner">
-
             <h1>Come on! OUC IGEM 2013</h1>
+
             <h1>Factors Considered in RNA guardian</h1>
-
             <p>不要着急!我们可以弄完的啦~</p>
+
             <p><br /></p>
-
             <a class="btn" href="http://jing.fm/tracks/225c3f.html">来,听首歌轻松下!</a>
+
             <a class="btn" href="https://2013.igem.org/Team:OUC-China/RNA_guardian/Design">Learn more</a>
           </div>
           </div>
         </li>
         </li>
Line 390: Line 436:
       <h3><b>Features Of Our Project</b></h3><hr>
       <h3><b>Features Of Our Project</b></h3><hr>
         <li>
         <li>
-
           <b><span class="glyphicon glyphicon-ok-sign"></span> Artificial Organelle</b>
+
           <b><span class="glyphicon glyphicon-ok-sign"></span> Artificial Organelle(Intracellular Compartment)</b>
           <p>We designed an artificial prokaryotic membranous organelle which is capable of anchoring proteins, opening up new possibilities for intracellular biochemistry reactions.</p>
           <p>We designed an artificial prokaryotic membranous organelle which is capable of anchoring proteins, opening up new possibilities for intracellular biochemistry reactions.</p>
           <a class="btn btn-info" href="https://2013.igem.org/Team:OUC-China/Results">Learn more</a>
           <a class="btn btn-info" href="https://2013.igem.org/Team:OUC-China/Results">Learn more</a>
Line 412: Line 458:
       </ul>
       </ul>
     </div>
     </div>
-
  <div class="container jumbotron">
+
<div class="container">
-
         <h1>Abstract</h1>
+
         <h3><b>Introduction</b></h3><hr>
-
         <p class="lead">Putting biological resources into production has now become a hot topic since the development of technology and the draining of natural resources. For example, research about biofuel and biochemistry is now flourishing. But biological products have drawbacks of being inefficient and not broad-spectrum. Inspired by eukaryotic membranous organelles, we aim to construct a prokaryotic membranous organelle to realize division of work inside the cell and improve the efficiency of production.  
+
         <p>Putting biological resources into production has now become a hot topic since the development of technology and the draining of natural resources. For example, research about biofuel and biochemistry is now flourishing. But biological products have drawbacks of being inefficient and not broad-spectrum. Inspired by eukaryotic membranous organelles, we aim to construct a prokaryotic membranous organelle to realize division of work inside the cell and improve the efficiency of production.  
How could a membrane be constructed in a Prokaryote? The answer may lie in this species: <i>Magnetosprillum Magneticum</i>, which can form a natural intracellular membrane. But this bacteria is slow-growing and requires demanding culture conditions, so the purpose of our project is to reconstruct the magnetosome membrane in <i><i>E.coli</i></i>, creating better conditions for efficient biological production.</p>
How could a membrane be constructed in a Prokaryote? The answer may lie in this species: <i>Magnetosprillum Magneticum</i>, which can form a natural intracellular membrane. But this bacteria is slow-growing and requires demanding culture conditions, so the purpose of our project is to reconstruct the magnetosome membrane in <i><i>E.coli</i></i>, creating better conditions for efficient biological production.</p>
-
         <a class="btn btn-large btn-success" href="#">Learn more</a>
+
         <p style="text-align:center"><a class="btn btn-large btn-info" href="https://2013.igem.org/Team:OUC-China/Overview">Learn more</a></p>
-
      </div>
+
</div>
-
    <hr>
+
<!--footer-->
-
      <div class="jumbotron">
+
<footer>
-
        <header id="banner" class="hero-unit no-radius">
+
<div class="container">
-
  <div class="container text-center">
+
<div class="row">
-
        <h4><img src="https://static.igem.org/mediawiki/2013/6/6f/Ouc-title.png" alt="OUC-China"></h4>
+
<div class="col-md-1"></div>
-
    </div>
+
<div class="col-md-6 footerleft">
-
</header>
+
  <h3 class="footer-title" style="color:#bdc1c5;">About</h3>
-
 
+
  <p>Thanks to:</p>
-
        <p class="lead" ><font color="#0099FF">Reconstructing the Magnetosome Membrane in E. coli</font></p>
+
  <p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;Bootstrap&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;Flat-ui&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;Unslider</p>
-
        <a class="btn btn-large btn-success" href="#">Learn more</a>
+
  <p>Designed and built by <a href="http://copypeng.com">@PengYong</a> and <a href="http://www.renren.com/345094399/profile?ref=opensearch_normal#notice">@ZhengYuchen.</a></p>
-
       </div>
+
  <p>Code licensed under Apache License v2.0</p>
 +
</div>
 +
<div class="col-md-4">
 +
  <div class="footer-banner">
 +
    <h3 class="footer-title">Contact US</h3>
 +
    <ul>
 +
      <li>E-mail:<a href="mailto:oucigem@163.com"> oucigem@163.com</a></li>
 +
      <li><a href="http://oucast.com"> Official website</a></li>
 +
      <li><a href="http://www.renren.com/oast"> Find us on Renren</a></li>
 +
       <li><a href="http://weibo.com/u/2805858363"> Find us on Weibo</a></li>
 +
      <li><a href="https://www.google.com/maps?q=+36.062884,+120.335542&sll=36.1360706,120.3648376&sspn=0.36606958894334163,0.9386959091014536&t=m&z=16">Find us on Google Map</a></li>
 +
    </ul>
 +
  </div>
 +
</div>
 +
<div class="col-md-1"></div>
 +
</div>
 +
</div>
 +
</footer>
<script src="http://netdna.bootstrapcdn.com/bootstrap/3.0.0/js/bootstrap.min.js"></script>
<script src="http://netdna.bootstrapcdn.com/bootstrap/3.0.0/js/bootstrap.min.js"></script>
-
<script src="http://unslider.com/unslider.js"></script>
+
<script src="http://unslider.com/unslider.min.js"></script>
<script>
<script>
$(function() {
$(function() {
Line 445: Line 508:
         delay: 40000,
         delay: 40000,
         keys: true,  
         keys: true,  
-
        arrows: true,
 
         fluid: true,
         fluid: true,
         dots: true
         dots: true

Latest revision as of 03:38, 28 September 2013

    Features Of Our Project


  • Artificial Organelle(Intracellular Compartment)

    We designed an artificial prokaryotic membranous organelle which is capable of anchoring proteins, opening up new possibilities for intracellular biochemistry reactions.

    Learn more
  • RNA Guardian

    We took advantage of the 3D structure of RNA, using ribosomes as a barrier to stabilize RNA.

    Learn more
  • Microfluidic

    We used Microfluidic Technology to detect the magnetism of our magnetic bacteria, Magnetospirillum Magneticum.

    Learn more
  • Preserving mamAB genes

    We preserved Magnetospirillum Magneticum AMB-1 mamAB genes in E.coli, prevented the genes lose when AMB-1 strain was cultured in high oxygen partial pressure environment.

    Learn more

Introduction


Putting biological resources into production has now become a hot topic since the development of technology and the draining of natural resources. For example, research about biofuel and biochemistry is now flourishing. But biological products have drawbacks of being inefficient and not broad-spectrum. Inspired by eukaryotic membranous organelles, we aim to construct a prokaryotic membranous organelle to realize division of work inside the cell and improve the efficiency of production. How could a membrane be constructed in a Prokaryote? The answer may lie in this species: Magnetosprillum Magneticum, which can form a natural intracellular membrane. But this bacteria is slow-growing and requires demanding culture conditions, so the purpose of our project is to reconstruct the magnetosome membrane in E.coli, creating better conditions for efficient biological production.

Learn more