Team:Uppsala/toxin-antitoxin-system
From 2013.igem.org
(Difference between revisions)
Sabrijamal (Talk | contribs) |
Sabrijamal (Talk | contribs) |
||
Line 138: | Line 138: | ||
<h1> References: </h1> <a id="refpoint"> </a> | <h1> References: </h1> <a id="refpoint"> </a> | ||
- | Plasmid p256 from Lactobacillus plantarum represents a new type of replicon in lactic acid bacteria, and contains a toxin–antitoxin-like plasmid maintenance system, Microbiology, | + | [1] Plasmid p256 from Lactobacillus plantarum represents a new type of replicon in lactic acid bacteria, and contains a toxin–antitoxin-like plasmid maintenance system, Microbiology, <a href="http://mic.sgmjournals.org/content/151/2/421.long"> Elisabeth Sorvig et al. September 30 2004 </a> |
- | + | ||
- | + | ||
Revision as of 18:11, 3 October 2013
Toxin-antitoxin system
Keep your plasmids without antibiotic resistance
One of the challenges when creating synthetic systems in bacteria that serve a purpose besides increasing the fitness of the organism is that there is a negative selective pressure against keeping the system. Toxin-antitoxin systems can be used to make plasmids far more stabile without having to use antibiotics and antibiotic resistance. If a clone were to lose the plasmid, the toxin which usually has a longer half life than the antitoxin will kill the bacteria.Above is an example of how a toxin-antitoxin system could be applied together with a gene X. If the gene is toxic or expressed strongly enough there will be a substantial evolutionary pressure to lose the plasmid during cell division. However if the gene is present on a plasmid with a toxin-antitoxin system would be lethal due to the loss of the antitoxin gene.