Team:Calgary/Notebook/References
From 2013.igem.org
(Difference between revisions)
Line 28: | Line 28: | ||
<li>World Health Organization. (2011) <i>Outbreak of E. coli O104:h4 infection: update 30</i>. Retrieved from http://www.euro.who.int/en/health-topics/disease-prevention/food-safety/news/news/2011/07/outbreaks-of-e.-coli-o104h4-infection-update-30</li> | <li>World Health Organization. (2011) <i>Outbreak of E. coli O104:h4 infection: update 30</i>. Retrieved from http://www.euro.who.int/en/health-topics/disease-prevention/food-safety/news/news/2011/07/outbreaks-of-e.-coli-o104h4-infection-update-30</li> | ||
+ | |||
<h3>Detector</h3> | <h3>Detector</h3> | ||
Line 57: | Line 58: | ||
+ | <h3>Beta-Lactamase</h3> | ||
+ | <li>Kong, Y., Yao, H., Ren, H., Subbian, S., Cirillo, S. L. G., Sacchettini, J. C., … Cirillo, J. D. (2010). Imaging tuberculosis with endogenous beta-lactamase reporter enzyme fluorescence in live mice. <i>Proceedings of the National Academy of Sciences of the United States of America, 107</i>(27), 12239–44. doi:10.1073/pnas.1000643107</li> | ||
+ | |||
+ | <li>Moore, J.T., Davis, S.T., & Dev, I.K. (1997). The development of beta-lactamase as a highly versatile genetic reporter for eukaryotic cells. <i>Analytical Biochemistry, 247</i>(2), 203–9. doi:10.1006/abio.1997.2092</li> | ||
+ | |||
+ | <li>Qureshi, S. (2007). β-Lactamase: an ideal reporter system for monitoring gene expression in live eukaryotic cells. <i>BioTechniques, 42</i>(1), 91–96. doi:10.2144/000112292</li> | ||
+ | |||
+ | <li>Remy, I., Ghaddar, G., & Michnick, S. W. (2007). Using the beta-lactamase protein-fragment complementation assay to probe dynamic protein-protein interactions. <i>Nature Protocols, 2</i>(9), 2302–6. doi:10.1038/nprot.2007.356</li> | ||
+ | |||
+ | <li>Wehrman, T., Kleaveland, B., Her, J.-H., Balint, R. F., & Blau, H. M. (2002). Protein-protein interactions monitored in mammalian cells via complementation of beta -lactamase enzyme fragments. <i>Proceedings of the National Academy of Sciences of the United States of America, 99</i>(6), 3469–74. doi:10.1073/pnas.062043699</li> | ||
+ | |||
+ | |||
+ | <h3>Linker</h3> | ||
+ | |||
+ | <li>Huh, Y. S., & Kim, I. H. (2003). Purification of fusion ferritin from recombinant <i>E. coli</i> using two-step sonications. <i>Biotechnology Letters</i>, 25(12), 993–6. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/12889837</li> | ||
+ | |||
+ | <li>Litowski, J. R., & Hodges, R. S. (2002). Designing heterodimeric two-stranded alpha-helical coiled-coils. Effects of hydrophobicity and alpha-helical propensity on protein folding, stability, and specificity. <i>The Journal of Biological Chemistry, 277</i>(40), 37272–9. doi:10.1074/jbc.M204257200</li> | ||
+ | |||
+ | <li>Zhang, X.-Q., Gong, S.-W., Zhang, Y., Yang, T., Wang, C.-Y., & Gu, N. (2010). Prussian blue modified iron oxide magnetic nanoparticles and their high peroxidase-like activity. <i>Journal of Materials Chemistry, 20</i>(24), 5110. doi:10.1039/c0jm00174k</li> | ||
+ | |||
+ | |||
+ | <h3>Journals</h3> | ||
<li>Apostolovic, B., & Klok, H.-A. (2008). pH-sensitivity of the E3/K3 heterodimeric coiled coil. <i>Biomacromolecules, 9</i>(11), 3173–80. doi:10.1021/bm800746e</li> | <li>Apostolovic, B., & Klok, H.-A. (2008). pH-sensitivity of the E3/K3 heterodimeric coiled coil. <i>Biomacromolecules, 9</i>(11), 3173–80. doi:10.1021/bm800746e</li> | ||
Line 98: | Line 121: | ||
<li>Huang, Z. (1991). Kinetic fluorescence measurement of fluorescein di-.beta.-D-galactoside hydrolysis by .beta.-galactosidase: intermediate channeling in stepwise catalysis by a free single enzyme. <i>Biochemistry</i>, 30(35), 8535–8540. doi:10.1021/bi00099a006</li> | <li>Huang, Z. (1991). Kinetic fluorescence measurement of fluorescein di-.beta.-D-galactoside hydrolysis by .beta.-galactosidase: intermediate channeling in stepwise catalysis by a free single enzyme. <i>Biochemistry</i>, 30(35), 8535–8540. doi:10.1021/bi00099a006</li> | ||
- | |||
- | |||
<li>Ingrassia, R., Gerardi, G., Biasiotto, G., & Arosio, P. (2006). Mutations of ferritin H chain C-terminus produced by nucleotide insertions have altered stability and functional properties. <i>Journal of Biochemistry</i>, 139(5), 881–5. doi:10.1093/jb/mvj101</li> | <li>Ingrassia, R., Gerardi, G., Biasiotto, G., & Arosio, P. (2006). Mutations of ferritin H chain C-terminus produced by nucleotide insertions have altered stability and functional properties. <i>Journal of Biochemistry</i>, 139(5), 881–5. doi:10.1093/jb/mvj101</li> | ||
Line 108: | Line 129: | ||
<li>Kim, S.-E., Ahn, K.-Y., Park, J.-S., Kim, K. R., Lee, K. E., Han, S.-S., & Lee, J. (2011). Fluorescent ferritin nanoparticles and application to the aptamer sensor. <i>Analytical Chemistry, 83</i>(15), 5834–43. doi:10.1021/ac200657s</li> | <li>Kim, S.-E., Ahn, K.-Y., Park, J.-S., Kim, K. R., Lee, K. E., Han, S.-S., & Lee, J. (2011). Fluorescent ferritin nanoparticles and application to the aptamer sensor. <i>Analytical Chemistry, 83</i>(15), 5834–43. doi:10.1021/ac200657s</li> | ||
- | |||
- | |||
<li>Lee, J., Kim, S. W., Kim, Y. H., & Ahn, J. Y. (2002). Active human ferritin H/L-hybrid and sequence effect on folding efficiency in Escherichia coli. <i>Biochemical and Biophysical Research Communications</i>, 298(2), 225–9. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/12387819</li> | <li>Lee, J., Kim, S. W., Kim, Y. H., & Ahn, J. Y. (2002). Active human ferritin H/L-hybrid and sequence effect on folding efficiency in Escherichia coli. <i>Biochemical and Biophysical Research Communications</i>, 298(2), 225–9. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/12387819</li> | ||
Line 118: | Line 137: | ||
<li>Li, D., Yang, M., Hu, J., Zhang, Y., Chang, H., & Jin, F. (2008). Determination of penicillin G and its degradation products in a penicillin production wastewater treatment plant and the receiving river. <i>Water Research, 42</i>(1-2), 307–17. doi:10.1016/j.watres.2007.07.016</li> | <li>Li, D., Yang, M., Hu, J., Zhang, Y., Chang, H., & Jin, F. (2008). Determination of penicillin G and its degradation products in a penicillin production wastewater treatment plant and the receiving river. <i>Water Research, 42</i>(1-2), 307–17. doi:10.1016/j.watres.2007.07.016</li> | ||
- | |||
- | |||
<li>Lohsse, A., Ullrich, S., Katzmann, E., Borg, S., Wanner, G., Richter, M., … Schüler, D. (2011). Functional analysis of the magnetosome island in Magnetospirillum gryphiswaldense: the mamAB operon is sufficient for magnetite biomineralization. <i>PloS ONE</i>, 6(10), e25561. doi:10.1371/journal.pone.0025561</li> | <li>Lohsse, A., Ullrich, S., Katzmann, E., Borg, S., Wanner, G., Richter, M., … Schüler, D. (2011). Functional analysis of the magnetosome island in Magnetospirillum gryphiswaldense: the mamAB operon is sufficient for magnetite biomineralization. <i>PloS ONE</i>, 6(10), e25561. doi:10.1371/journal.pone.0025561</li> | ||
Line 132: | Line 149: | ||
<li>Miller, J.C., Tan, S., Qiao, G., Barlow, K.A., Wang, J., Xia, D.F., Rebar, E.J. (2011). A TALE nuclease architecture for efficient genome editing. <i>Nature Biotechnology</i>, 29(2), 143-148.</li> | <li>Miller, J.C., Tan, S., Qiao, G., Barlow, K.A., Wang, J., Xia, D.F., Rebar, E.J. (2011). A TALE nuclease architecture for efficient genome editing. <i>Nature Biotechnology</i>, 29(2), 143-148.</li> | ||
- | |||
- | |||
<li>Nakajima, Y., & Ohmiya, Y. (2010). Bioluminescence assays: multicolor luciferase assay, secreted luciferase assay and imaging luciferase assay. <i>Expert Opinion on Drug Discovery</i>, 5(9), 835–849. doi:10.1517/17460441.2010.506213</li> | <li>Nakajima, Y., & Ohmiya, Y. (2010). Bioluminescence assays: multicolor luciferase assay, secreted luciferase assay and imaging luciferase assay. <i>Expert Opinion on Drug Discovery</i>, 5(9), 835–849. doi:10.1517/17460441.2010.506213</li> | ||
Line 142: | Line 157: | ||
<li>Piston, D. W., & Kremers, G.-J. (2007). Fluorescent protein FRET: the good, the bad and the ugly. <i>Trends in Biochemical Sciences</i>, 32(9), 407–414. doi:10.1016/j.tibs.2007.08.003</li> | <li>Piston, D. W., & Kremers, G.-J. (2007). Fluorescent protein FRET: the good, the bad and the ugly. <i>Trends in Biochemical Sciences</i>, 32(9), 407–414. doi:10.1016/j.tibs.2007.08.003</li> | ||
- | |||
- | |||
- | |||
- | |||
<li>Santambrogio, P., Levi, S., Cozzi, A., Rovida, E., Albertini, A., & Arosio, P. (1993). Production and characterization of recombinant heteropolymers of human ferritin H and L chains.<i> The Journal of Biological Chemistry</i>, 268(17), 12744–8. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/8509409</li> | <li>Santambrogio, P., Levi, S., Cozzi, A., Rovida, E., Albertini, A., & Arosio, P. (1993). Production and characterization of recombinant heteropolymers of human ferritin H and L chains.<i> The Journal of Biological Chemistry</i>, 268(17), 12744–8. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/8509409</li> | ||
Line 154: | Line 165: | ||
<li>Watt, G. D., Kim, J.-W., Zhang, B., Miller, T., Harb, J. N., Davis, R. C., & Choi, S. H. (2012). A protein-based ferritin bio-nanobattery. <i>Journal of Nanotechnology</i>, 2012, 1–9. doi:10.1155/2012/516309</li> | <li>Watt, G. D., Kim, J.-W., Zhang, B., Miller, T., Harb, J. N., Davis, R. C., & Choi, S. H. (2012). A protein-based ferritin bio-nanobattery. <i>Journal of Nanotechnology</i>, 2012, 1–9. doi:10.1155/2012/516309</li> | ||
- | |||
- | |||
<li>Wong, K. K. W., Douglas, T., Gider, S., Awschalom, D. D., & Mann, S. (1998). Biomimetic synthesis and characterization of magnetic proteins (magnetoferritin). <i>Chemistry of Materials</i>, 10(1), 279–285. doi:10.1021/cm970421o</li> | <li>Wong, K. K. W., Douglas, T., Gider, S., Awschalom, D. D., & Mann, S. (1998). Biomimetic synthesis and characterization of magnetic proteins (magnetoferritin). <i>Chemistry of Materials</i>, 10(1), 279–285. doi:10.1021/cm970421o</li> |
Revision as of 22:27, 28 October 2013