Team:Uppsala/zeaxanthin

From 2013.igem.org

(Difference between revisions)
 
(12 intermediate revisions not shown)
Line 13: Line 13:
</style>
</style>
 +
 +
<script type="text/javascript">
 +
/*Acts once the document is loaded*/ $(document).ready(function() { /*Move the tn-main-wrap as child of <body>*/ $("#tn-main-wrap-wrap").prependTo($("body")); /*Move the menubars in the tn-main-wrap*/ $("#menubar.left-menu").appendTo($("#tn-main-wrap")); $("#menubar.right-menu").appendTo($("#tn-main-wrap"));
 +
/*Spoiler JS*/ $(".tn-spoiler div").slideUp(); $(".tn-spoiler a").click(function(e) { e.preventDefault(); $(".tn-spoiler-active").removeClass("tn-spoiler-active"); $(this).parent().addClass("tn-spoiler-active"); $(".tn-spoiler").not(".tn-spoiler-active").children("div").slideUp(); $(".tn-spoiler-active").children("div").slideToggle(); });
 +
/*Add favicon*/ $("link[rel='shortcut icon']").remove(); $("head").append("<link rel='shortcut icon' type='image/png' href='https://static.igem.org/mediawiki/2013/6/6d/Uppsalas-cow-con.png'>"); });
 +
</script>
 +
 +
<link href="https://2013.igem.org/Team:Uppsala/lightbox-css-code.css?action=raw&ctype=text/css" type="text/css" rel="stylesheet">
 +
 +
<script src="https://2013.igem.org/Team:Uppsala/jquery-code.js?action=raw&ctype=text/javascript" type="text/javascript"></script>
 +
 +
<script src="https://2013.igem.org/Team:Uppsala/lightbox-code.js?action=raw&ctype=text/javascript" type="text/javascript"></script>
</head>
</head>
Line 57: Line 69:
                                                 <li><a href="https://2013.igem.org/Team:Uppsala/metabolic-engineering">Metabolic engineering</a>
                                                 <li><a href="https://2013.igem.org/Team:Uppsala/metabolic-engineering">Metabolic engineering</a>
                                                     <ul>
                                                     <ul>
-
                                                                 <li><a href="https://2013.igem.org/Team:Uppsala/p-coumaric-acid">P-coumaric acid</a></li>
+
                                                                 <li><a href="https://2013.igem.org/Team:Uppsala/p-coumaric-acid">p-Coumaric acid</a></li>
                                                                 <li><a href="https://2013.igem.org/Team:Uppsala/resveratrol">Resveratrol</a></li>
                                                                 <li><a href="https://2013.igem.org/Team:Uppsala/resveratrol">Resveratrol</a></li>
<li><a href="https://2013.igem.org/Team:Uppsala/lycopene">Lycopene</a></li>
<li><a href="https://2013.igem.org/Team:Uppsala/lycopene">Lycopene</a></li>
Line 78: Line 90:
<li><a href="https://2013.igem.org/Team:Uppsala/modeling" id="list_type1"><img class="nav-text" src="https://static.igem.org/mediawiki/2013/6/63/Uppsala2013_Modeling.png"></a>
<li><a href="https://2013.igem.org/Team:Uppsala/modeling" id="list_type1"><img class="nav-text" src="https://static.igem.org/mediawiki/2013/6/63/Uppsala2013_Modeling.png"></a>
<ul>
<ul>
-
<li><a href="https://2013.igem.org/Team:Uppsala/P-Coumaric-acid-pathway">P-Coumaric acid</a></li>
+
<li><a href="https://2013.igem.org/Team:Uppsala/P-Coumaric-acid-pathway">Kinetic model</a></li>
<li><a href="https://2013.igem.org/Team:Uppsala/modeling-tutorial">Modeling tutorial </a></li>
<li><a href="https://2013.igem.org/Team:Uppsala/modeling-tutorial">Modeling tutorial </a></li>
 +
 +
<li><a href="https://2013.igem.org/Team:Uppsala/toxicity-model">Toxicity model</a></li>
</ul></li>
</ul></li>
<li><a href="https://2013.igem.org/Team:Uppsala/parts" id="list_type2"><img class="nav-text" src="https://static.igem.org/mediawiki/2013/e/eb/Uppsala2013_parts.png"></a></li>
<li><a href="https://2013.igem.org/Team:Uppsala/parts" id="list_type2"><img class="nav-text" src="https://static.igem.org/mediawiki/2013/e/eb/Uppsala2013_parts.png"></a></li>
Line 88: Line 102:
<li><a href="https://2013.igem.org/Team:Uppsala/carotenoid-group">Carotenoid group</a></li>
<li><a href="https://2013.igem.org/Team:Uppsala/carotenoid-group">Carotenoid group</a></li>
<li><a href="https://2013.igem.org/Team:Uppsala/chassi-group">Chassi group</a></li>
<li><a href="https://2013.igem.org/Team:Uppsala/chassi-group">Chassi group</a></li>
 +
                                                <li><a href="https://2013.igem.org/Team:Uppsala/advisors">Advisors</a></li>
</ul></li>
</ul></li>
Line 97: Line 112:
<li><a href="https://2013.igem.org/Team:Uppsala/public-opinion">Public opinion </a></li>
<li><a href="https://2013.igem.org/Team:Uppsala/public-opinion">Public opinion </a></li>
                                                 <li><a href="https://2013.igem.org/Team:Uppsala/Outreach">High school & media </a></li>
                                                 <li><a href="https://2013.igem.org/Team:Uppsala/Outreach">High school & media </a></li>
-
 
+
<li><a href="https://2013.igem.org/Team:Uppsala/bioart">BioArt</a></li>
 +
<li><a href="https://2013.igem.org/Team:Uppsala/LactonutritiousWorld">A LactoWorld</a></li>
 +
<li><a href="https://2013.igem.org/Team:Uppsala/killswitches">Killswitches</a></li>
 +
<li><a href="https://2013.igem.org/Team:Uppsala/realization">Patent</a></li>
</ul></li>
</ul></li>
-
<li><a href="https://2013.igem.org/Team:Uppsala/attribution" id="list_type4"><img class="nav-text" src="https://static.igem.org/mediawiki/2013/5/5d/Uppsala2013_Attributions.png"></a>
+
<li><a href="https://2013.igem.org/Team:Uppsala/attribution" id="list_type4"><img class="nav-text" src="https://static.igem.org/mediawiki/2013/5/5d/Uppsala2013_Attributions.png"></a></li>  
-
                                <ul>
+
-
                                    <li><a href="https://2013.igem.org/Team:Uppsala/collaboration">Collaboration</a></li>
+
-
                                </ul></li>  
+
<li><a href="https://2013.igem.org/Team:Uppsala/notebook" id="list_type3"><img class="nav-text" src="https://static.igem.org/mediawiki/2013/3/36/Uppsala2013_Notebook.png"></a>
<li><a href="https://2013.igem.org/Team:Uppsala/notebook" id="list_type3"><img class="nav-text" src="https://static.igem.org/mediawiki/2013/3/36/Uppsala2013_Notebook.png"></a>
                                     <ul>
                                     <ul>
                                         <li><a href="https://2013.igem.org/Team:Uppsala/safety-form">Safety form</a></li>
                                         <li><a href="https://2013.igem.org/Team:Uppsala/safety-form">Safety form</a></li>
 +
                                        <li><a href="https://2013.igem.org/Team:Uppsala/protocols">Protocols</a></li>
                                     </ul></li>
                                     </ul></li>
</ul>
</ul>
Line 118: Line 134:
         <div id="clear"></div>
         <div id="clear"></div>
-
<p>Zeaxanthin is a yellow carotenoid pigment, derived from the precursor ß-carotene through hydroxylation by the enzyme ”Beta-carotene hydroxylase”. Zeaxanthin acts as an antioxidant and can be found in for example peppers, yolk and maize.<sup><a href="#l1">(1)</a></sup> According to studies zeaxanthin has positive effects on both undamaged and impaired vision and it may prevent age-related macular degeneration (AMD), an eye condition that could lead to blindness.<sup><a href="#l2"> (2)</a></sup> Furthermore studies have also indicated that zeaxanthin may have skin protective activities.<sup><a href="#l2"> (1,4)</a></sup>
+
<p>Zeaxanthin is a yellow carotenoid pigment, derived from the precursor ß-carotene through hydroxylation by the enzyme ”Beta-carotene hydroxylase”. Zeaxanthin acts as an antioxidant and can be found in for example peppers, yolk and maize.<sup><a href="#l1">[1]</a></sup> According to studies zeaxanthin has positive effects on both undamaged and impaired vision and it may prevent age-related macular degeneration (AMD), an eye condition that could lead to blindness.<sup><a href="#l2"> (2)</a></sup> Furthermore studies have also indicated that zeaxanthin may have skin protective activities.<sup><a href="#l2">[1,3]</a></sup>
<br><br>
<br><br>
-
Except for having beneficial properties the carotenoid zeaxanthin is one of the primary precursors for the production of the <a href="https://2013.igem.org/Team:Uppsala/saffron">saffron metabolites</a> picrocrocin, crocin and safranal. The production of saffron was inspired by the work of Washington team <a href="https://2012.igem.org/Team:WashU">WashU iGEM 2012.</a> Since the gene (CrtZ) that was used for the production of zeaxanthin was a eukaryotic version from Arabidopsis Thaliana, we decided to focus on finding a suitable gene to optimize the production of the above-mentioned metabolites. When searching for an appropriate gene we came in contact with Slovenia iGEM 2010 (lank) that had produced zeaxanthin in E.coli. The operon that was obtained contained genes that were originally from the bacteria <a href="http://parts.igem.org/Part:BBa_K323122">Pantoea Anantis.</a></p>  
+
Except for having beneficial properties the carotenoid zeaxanthin is one of the primary precursors for the production of the <a href="https://2013.igem.org/Team:Uppsala/saffron">saffron metabolites</a> picrocrocin, crocin and safranal. The production of saffron was inspired by the work of Washington team <a href="https://2012.igem.org/Team:WashU">WashU iGEM 2012.</a> Since the gene (CrtZ) that was used for the production of zeaxanthin was a eukaryotic version from Arabidopsis Thaliana, we decided to focus on finding a suitable gene to optimize the production of the above-mentioned metabolites. When searching for an appropriate gene we came in contact with <a href="https://2010.igem.org/Team:Slovenia">Slovenia iGEM 2010</a> that had produced zeaxanthin in E.coli. The operon that was obtained contained genes that were originally from the bacteria <a href="http://parts.igem.org/Part:BBa_K323122">Pantoea Anantis.</a></p>  
<a id="b1"><h1>Methods:</h1></a>
<a id="b1"><h1>Methods:</h1></a>
<p>For the characterization of zeaxanthin in E.coli DH5alpha we put together a standardized method for zeaxanthin extraction and measuring. Since zeaxanthin in its pure form is extremely expensive (~ 480 €/mg) we bought maize at our local supermarket and carried out liquid-liquid extractions using methanol and performed spectrophotometry measurements. We compared literature absorbance values of zeaxanthin to the peaks we obtained from our own measurements and continued our experiments until we believed to have an optimized extraction method.</p>
<p>For the characterization of zeaxanthin in E.coli DH5alpha we put together a standardized method for zeaxanthin extraction and measuring. Since zeaxanthin in its pure form is extremely expensive (~ 480 €/mg) we bought maize at our local supermarket and carried out liquid-liquid extractions using methanol and performed spectrophotometry measurements. We compared literature absorbance values of zeaxanthin to the peaks we obtained from our own measurements and continued our experiments until we believed to have an optimized extraction method.</p>
-
<img class="zeaxanthin1" src="https://static.igem.org/mediawiki/2013/9/9d/Uppsala2013_Zeaxanthin1.png">
+
<a href="https://static.igem.org/mediawiki/2013/9/9d/Uppsala2013_Zeaxanthin1.png" data-lightbox="roadtrip" title="Maize bought at our local supermarket that was grinded and later used to make a standardized zeaxanthin extraction method.<br> Extraction experiments carried out on grinded maize using methanol."><img class="zeaxanthin1" src="https://static.igem.org/mediawiki/2013/9/9d/Uppsala2013_Zeaxanthin1.png"></a>
<i><b>Figure 1.</b> Maize bought at our local supermarket that was grinded and later used to make a standardized zeaxanthin extraction method. </i>
<i><b>Figure 1.</b> Maize bought at our local supermarket that was grinded and later used to make a standardized zeaxanthin extraction method. </i>
Line 138: Line 154:
Since we would eventually like to produce zeaxanthin in Lactobacillus in yoghurt it would be preferable to have a constitutive promoter, such as the CP-promoters in our <a href="https://2013.igem.org/Team:Uppsala/promoters#l1">promoter library.</a> Parallel to the characterization of zeaxanthin in E.coli we therefore attempted to remove the pBAD/AraC promoter from the zeaxanthin operon.</p>
Since we would eventually like to produce zeaxanthin in Lactobacillus in yoghurt it would be preferable to have a constitutive promoter, such as the CP-promoters in our <a href="https://2013.igem.org/Team:Uppsala/promoters#l1">promoter library.</a> Parallel to the characterization of zeaxanthin in E.coli we therefore attempted to remove the pBAD/AraC promoter from the zeaxanthin operon.</p>
-
         <img class="methods-plasmid" src="https://static.igem.org/mediawiki/2013/6/68/Uppsala2013_Zeaxanthin_photoshop_plasmid_andmolecules.png">
+
         <a href="https://static.igem.org/mediawiki/2013/a/aa/Uppsala2013_Zeaxanthin_Plasmid_and_molecules.png" data-lightbox="roadtrip"><img class="methods-plasmid" src="https://static.igem.org/mediawiki/2013/a/aa/Uppsala2013_Zeaxanthin_Plasmid_and_molecules.png"></a>
<h1>Results:</h1>
<h1>Results:</h1>
Line 144: Line 160:
<p>Production of zeaxanthin in E.coli DH5alpha was detected trough spectrophotometry measurements performed after liquid-liquid extractions using methanol. The resulting absorbance curve was compared to the standardized curve. In both graphs you can find the two peaks corresponding to zeaxanthin.</p>
<p>Production of zeaxanthin in E.coli DH5alpha was detected trough spectrophotometry measurements performed after liquid-liquid extractions using methanol. The resulting absorbance curve was compared to the standardized curve. In both graphs you can find the two peaks corresponding to zeaxanthin.</p>
-
<img class="zeaxanthin3" src="https://static.igem.org/mediawiki/2013/3/30/Uppsala2013_zeaxanthin2.png">
+
<a href="https://static.igem.org/mediawiki/2013/3/30/Uppsala2013_zeaxanthin2.png" data-lightbox="roadtrip2" title="E.coli culture believed to have zeaxanthin production.<br> A liquid-liquid extraction was carried out on the E.coli culture containing the plasmid above. Methanol was used as an organic solvent."><img class="zeaxanthin3" src="https://static.igem.org/mediawiki/2013/3/30/Uppsala2013_zeaxanthin2.png"></a>
Line 152: Line 168:
          
          
         <div id="pic-box3">
         <div id="pic-box3">
-
<img class="zeaxanthin5" src="https://static.igem.org/mediawiki/2013/0/04/Uppsala2013_Zeaxanthin5.jpg">
+
<a href="https://static.igem.org/mediawiki/2013/0/04/Uppsala2013_Zeaxanthin5.jpg" data-lightbox="roadtrip2" title="Spectrophotometry of zeaxanthin extraction from maize resulted in the graph above. The two peaks are characteristic for zeaxanthin."><img class="zeaxanthin5" src="https://static.igem.org/mediawiki/2013/0/04/Uppsala2013_Zeaxanthin5.jpg"></a>
-
<img class="zeaxanthin6" src="https://static.igem.org/mediawiki/2013/0/0e/Uppsala2013_Zeaxanthin6.jpg">
+
<a href="https://static.igem.org/mediawiki/2013/0/0e/Uppsala2013_Zeaxanthin6.jpg" data-lightbox="roadtrip2" title="Spectrophotometry of an E.coli culture containing the plasmid with the zeaxanthin operon. The characteristic peaks of zeaxanthin are present, indicating that zeaxanthin was present in the sample."><img class="zeaxanthin6" src="https://static.igem.org/mediawiki/2013/0/0e/Uppsala2013_Zeaxanthin6.jpg"></a>
         </div>         
         </div>         
Line 166: Line 182:
<p>Spectrophotometry measurements were also done on unmodified E.coli, as a negative control. These measurements did not result in the peaks that are characteristic for zeaxanthin. </p>
<p>Spectrophotometry measurements were also done on unmodified E.coli, as a negative control. These measurements did not result in the peaks that are characteristic for zeaxanthin. </p>
-
<img class="zeaxanthin7" src="https://static.igem.org/mediawiki/2013/d/d9/Uppsala2013_Zeaxanthin7.jpg">
+
<a href="https://static.igem.org/mediawiki/2013/d/d9/Uppsala2013_Zeaxanthin7.jpg" data-lightbox="roadtrip2" title="Spectrophotometry of unmodified E.coli did not result<br> in the peaks characteristic for zeaxanthin."><img class="zeaxanthin7" src="https://static.igem.org/mediawiki/2013/d/d9/Uppsala2013_Zeaxanthin7.jpg"></a>
<i class="fig-text7"><b>Figure 7.</b> Spectrophotometry of unmodified E.coli did not result<br> in the peaks characteristic for zeaxanthin. </i>
<i class="fig-text7"><b>Figure 7.</b> Spectrophotometry of unmodified E.coli did not result<br> in the peaks characteristic for zeaxanthin. </i>
Line 172: Line 188:
         <div id="clear"></div>
         <div id="clear"></div>
 +
<h1> References </h1>
 +
<a id="l1">[1]</a>. Baumann, Leslie S. “Zeaxanthin.(Cosmeceutical critique)” Skin & Allergy News. ISSN: 0037-6337, Volume 40, Issue 5. 2009
 +
<br>
 +
<a id="l2">[2]</a>. Loskutova E et al, “Macular Pigment and its Contribution to Vision”  Nutrients ISSN 2072-6643, 2013
 +
<br>
 +
<a id="l3">[3]</a>. ”Protection against sunburn and skin problems with orally-ingested high-dosage zeaxanthin”
 +
<a href=”http://apps.webofknowledge.com.ezproxy.its.uu.se/full_record.do?product=UA&search_mode=GeneralSearch&qid=1&SID=S2MoOQiIQ1bvPdZp3S6&page=1&doc=10”> http://apps.webofknowledge.com.ezproxy.its.uu.se/full_record.doproduct=UA&search_mode=GeneralSearch&qid=1&SID=S2MoOQiIQ1bvPdZp3S6&page=1&
 +
doc=10  </a>
</div> <!-- main_content ends -->  
</div> <!-- main_content ends -->  
Line 177: Line 201:
<div id="bottom-pic">
<div id="bottom-pic">
-
<img class="bottom-pic" src="https://static.igem.org/mediawiki/2013/a/aa/Bottom_picture.png">
+
</div>
</div>

Latest revision as of 15:49, 28 October 2013

Uppsala iGEM 2013

Zeaxanthin

Zeaxanthin is a yellow carotenoid pigment, derived from the precursor ß-carotene through hydroxylation by the enzyme ”Beta-carotene hydroxylase”. Zeaxanthin acts as an antioxidant and can be found in for example peppers, yolk and maize.[1] According to studies zeaxanthin has positive effects on both undamaged and impaired vision and it may prevent age-related macular degeneration (AMD), an eye condition that could lead to blindness. (2) Furthermore studies have also indicated that zeaxanthin may have skin protective activities.[1,3]

Except for having beneficial properties the carotenoid zeaxanthin is one of the primary precursors for the production of the saffron metabolites picrocrocin, crocin and safranal. The production of saffron was inspired by the work of Washington team WashU iGEM 2012. Since the gene (CrtZ) that was used for the production of zeaxanthin was a eukaryotic version from Arabidopsis Thaliana, we decided to focus on finding a suitable gene to optimize the production of the above-mentioned metabolites. When searching for an appropriate gene we came in contact with Slovenia iGEM 2010 that had produced zeaxanthin in E.coli. The operon that was obtained contained genes that were originally from the bacteria Pantoea Anantis.

Methods:

For the characterization of zeaxanthin in E.coli DH5alpha we put together a standardized method for zeaxanthin extraction and measuring. Since zeaxanthin in its pure form is extremely expensive (~ 480 €/mg) we bought maize at our local supermarket and carried out liquid-liquid extractions using methanol and performed spectrophotometry measurements. We compared literature absorbance values of zeaxanthin to the peaks we obtained from our own measurements and continued our experiments until we believed to have an optimized extraction method.

Figure 1. Maize bought at our local supermarket that was grinded and later used to make a standardized zeaxanthin extraction method.
Figure 2. Extraction experiments carried out on grinded maize using methanol.

The operon acquired from Slovenia iGEM 2010 consists of the genes CrtE, CrtB, CrtI, CrtY and CrtZ assembled with the inducible promoter pBAD/AraC.

Since we would eventually like to produce zeaxanthin in Lactobacillus in yoghurt it would be preferable to have a constitutive promoter, such as the CP-promoters in our promoter library. Parallel to the characterization of zeaxanthin in E.coli we therefore attempted to remove the pBAD/AraC promoter from the zeaxanthin operon.

Results:

Spectrophotometry

Production of zeaxanthin in E.coli DH5alpha was detected trough spectrophotometry measurements performed after liquid-liquid extractions using methanol. The resulting absorbance curve was compared to the standardized curve. In both graphs you can find the two peaks corresponding to zeaxanthin.

Figure 3. E.coli culture believed to have zeaxanthin production.
Figure 4. A liquid-liquid extraction was carried out on the E.coli culture containing the plasmid above. Methanol was used as an organic solvent.
Figure 5. Spectrophotometry of zeaxanthin extraction from maize resulted in the graph above. The two peaks are characteristic for zeaxanthin.
Figure 6. Spectrophotometry of an E.coli culture containing the plasmid with the zeaxanthin operon. The characteristic peaks of zeaxanthin are present, indicating that zeaxanthin was present in the sample.

Spectrophotometry measurements were also done on unmodified E.coli, as a negative control. These measurements did not result in the peaks that are characteristic for zeaxanthin.

Figure 7. Spectrophotometry of unmodified E.coli did not result
in the peaks characteristic for zeaxanthin.

References

[1]. Baumann, Leslie S. “Zeaxanthin.(Cosmeceutical critique)” Skin & Allergy News. ISSN: 0037-6337, Volume 40, Issue 5. 2009
[2]. Loskutova E et al, “Macular Pigment and its Contribution to Vision” Nutrients ISSN 2072-6643, 2013
[3]. ”Protection against sunburn and skin problems with orally-ingested high-dosage zeaxanthin” http://apps.webofknowledge.com.ezproxy.its.uu.se/full_record.doproduct=UA&search_mode=GeneralSearch&qid=1&SID=S2MoOQiIQ1bvPdZp3S6&page=1& doc=10