Team:Bielefeld-Germany/Biosafety/Biosafety System L

From 2013.igem.org

(Difference between revisions)
 
(48 intermediate revisions not shown)
Line 66: Line 66:
==Overview==
==Overview==
-
[[File:IGEM Bielefeld 2013 Biosafetylacofgrowth.jpg|left|thumb|250px| '''Figure 1:''' Biosafety-System Lac of growth.]]
+
[[File:IGEM Bielefeld 2013 Biosafetylacofgrowth.jpg|left|thumb|250px| '''Biosafety-System Lac of growth.''']]
<p align="justify">
<p align="justify">
-
Naturally the lac operon regulates the catabolism of the disaccharide lactose (4-O-(β-D-Galactopyranosyl)-D-glucopyranose) in ''E. coli''. The operon contains the lactose promoter (plac) and the genes for the catabolism of the Lactose to Glucose and Galactose. Upstream of the lac operator exists the coding sequence for the repressor lacI under the control of a weak promoter ([https://2013.igem.org/Team:Bielefeld-Germany/Biosafety/Biosafety_System_L#References Jacob ''et al.'', 1961]). <br>
+
The Biosafety-System ''Lac of Growth'' <bbpart>BBa_K1172911</bbpart> is an improvement of the BioBrick <bbpart>BBa_K914014</bbpart> by replacing the first promoter P<sub>''BAD''</sub> into the rhamnose promoter P<sub>''Rha''</sub> and the integration of the alanine racemase (''alr'') <bbpart>BBa_K1172901</bbpart>. The transcription of the Barnase is regulated by the ''lac'' promoter and therefore LacI is used as repressor. The P<sub>''lac''</sub> promoter is characterized by a high basal transcription so that there is a high lethality rate in this systems. But as there are different challenging opportunities to overcome this problem it is also an interesting Biosafety-System with a high potential use.
</p>
</p>
-
 
-
 
-
 
<br><br>
<br><br>
-
 
==Genetic Approach==
==Genetic Approach==
-
 
+
<br>
-
<br><br>
+
==='''Rhamnose promoter P<sub>Rha</sub>'''===
-
==='''Rhamnose promoter'''===
+
<br>
[[File:IGEM Bielefeld 2013 biosafety Rhamnose-promoter.png|left]]
[[File:IGEM Bielefeld 2013 biosafety Rhamnose-promoter.png|left]]
<p align="justify">
<p align="justify">
-
The promoter rhaBAD regulates naturally the catabolism of the hexose L-rhamnose. The advantage of the operon is its positively regulation. All in all the regulon consists of the promoter pRhaT, who regulates the expression of the protein RhaT for the uptake of L-Rhamnose, the operons rhaSR and rhaBAD.<br>
+
The promoter P<sub>''Rha''</sub> (<bbpart>BBa_K914003</bbpart>) naturally regulates  the catabolism of the hexose L-rhamnose. The advantage to use this promoter is its solely positive regulation. The regulon consists of the gene ''rhaT'' for the L-rhamnose transporter and the two operons ''rhaSR'' and ''rhaBAD''.<br>
-
The operon rhaSR regulates the genes RhaS and RhaR, whose translated proteins are responsible for the positive activation of the L-Rhamnose catabolism, while the operon rhaBAD regulates the genes for the direct catabolism of L-Rhamnose.<br>
+
The operon ''rhaSR'' encodes the two transcriptional activators RhaS and RhaR, who are responsible for the positive activation of the L-rhamnose catabolism, while the operon ''rhaBAD'' encodes the genes for the direct catabolism of L-rhamnose.<br>
-
When L-rhamnose is present, it acts as an inducer by binding to the regulatory protein RhaR. RhaR regulates his own expression and the expression of the regulatory gene RhaS by inhibiting or activating, in the presence of L-Rhamnose, the operon RhaSR. Normally the expression level is modest, but it can be enhanced by a higher level of intracellular cAMP, which increases in the absence of glucose. So in the presence of L-Rhamnose and a high concentration of intracellular cAMP the activor protein RhaR is expressed on higher level, resulting in an activation of the promoter pRhaT for an efficient L-rhamnose uptake and an activation of the operon rhaBAD. The L-Rhamnose is than broken down into dihydroxyacetone phosphate and lactate aldehyde by the enzymes of the operon rhaBAD ([https://2013.igem.org/Team:Bielefeld-Germany/Biosafety/Biosafety_System_S#References Wickstrum ''et al.'', 2005]).</p><br>
+
When L-rhamnose is present, it acts as an inducer by binding to the regulatory protein RhaR. RhaR regulates its own expression and the expression of the regulatory gene ''rhaS'' by repressing or, in the presence of L-rhamnose, activating the operon ''rhaSR''. Normally, the expression level is modest, but it can be enhanced by a higher level of intracellular cAMP, which increases in the absence of glucose. So, in the presence of L-rhamnose and a high concentration of intracellular cAMP, the activator protein RhaR is expressed on higher level, resulting in an activation of the promoter P<sub>''rhaT''</sub> for an efficient L-rhamnose uptake and an activation of the operon ''rhaBAD''. The L-rhamnose is than broken down into dihydroxyacetone phosphate and lactate aldehyde by the enzymes encoded by ''rhaBAD'' ([https://2013.igem.org/Team:Bielefeld-Germany/Biosafety/Biosafety_System_L#References Wickstrum ''et al.'', 2005]).<br>
 +
A brief schematic summary of the regulation is shown in Figure 1.
 +
</p><br>
<br>
<br>
-
[[File:IGEM Bielefeld 2013 biosafety Rhamnosepromoter 3.png|600px|thumb|center|'''Figure 2:''' The catabolism of L-rhamnose in ''E. coli'' is turned off in general but inducible by L-rhamnose. The induction activates the transcription of the genes rhaS and rhaR, who regulate the L-ramnose catablosim by positive activation of the rhmanose uptake (rhaT) and metabolization (rhaBAD).]]
+
[[File:IGEM Bielefeld 2013 biosafety Rhamnosepromoter 3.png|600px|thumb|center|'''Figure 1:''' The catabolism of L-rhamnose in ''E. coli'' is turned off in general but inducible by L-rhamnose. The induction activates the transcription of the genes ''rhaS'' and ''rhaR'', which regulate the L-rhamnose catabolism by positive activation of the rhamnose uptake (''rhaT'') and its metabolization (''rhaBAD'').]]
<br>
<br>
<p align="justify">
<p align="justify">
-
Dihydroxyacetone phosphate can be metabolized in the glycolysis pathway, while the lactate aldehyde is oxized to lactate under aerobic conditions and reduced to L-1,2,-propandiol under anaerobic conditions.<br>
+
Dihydroxyacetone phosphate can be metabolized in the glycolysis pathway, while lactate aldehyde is oxidized to lactate under aerobic conditions and reduced to L-1,2,-propandiol under anaerobic conditions.<br>
-
This degradation of L-Rhamnose can be separated in three steps. In the first step the L-Rhamnose is turned into L-Rhamnulose by an isomerase (gene RhaA). The catabolism continues by the a kinase (gene RhaB), who phosphorylates the L-Rhamnulose to L-Rhamnulose-1-phosphate. This is finally hydrolyzed by Aldolase (gene RhaD) to dihydroxyacetone phosphate and lactate aldehyde ([https://2013.igem.org/Team:Bielefeld-Germany/Biosafety/Biosafety_System_S#References Baldoma ''et al.'', 1988]).<br>
+
The degradation of L-rhamnose can be separated in three steps. In the first step the L-rhamnose is turned into L-rhamnulose by an isomerase (gene ''rhaA''). L-rhamnulose is in turn phosphorylated to L-rhamnulose-1-phosphate by a kinase (gene ''rhaB'') and the sugar phosphate is finally hydrolyzed by an aldolase (gene ''rhaD'') to dihydroxyacetone phosphate and lactate aldehyde ([https://2013.igem.org/Team:Bielefeld-Germany/Biosafety/Biosafety_System_L#References Baldoma ''et al.'', 1988]).<br>
-
Four our Safety-System the rhamnose promoter rhaBAD is used to control the expression of the repressor araC and the essential Alanine-Racemase, because this promoter has even a lower basal transcription then the arabinose promoter pBAD. This is needed to tightly repress the expression of the Alanine-Racemase (''alr'') and take so advantage of the double-kill switch. So although the rhamnose promoter rhaBAD is characterized by a very low basal transcription it can not be used for the control of the toxic Barnase, because the regulation is mainly organized by an activation and not an active repression, but this is optimal for the first containing the Alanine-Racemase. So in conclusion this promoter is the best choice for the first part of the Biosafety-System, as it is tightly repressed in the absence of L-Rhamnose, but activated in its presence.</p>
+
For our Safety-System ''Lac of Growth'', the rhamnose promoter P<sub>Rha</sub> is used to control the expression of the repressor LacI and the essential alanine racemase, because this promoter has an even lower basal transcription then the arabinose promoter P<sub>''BAD''</sub>. This is needed to tightly repress the expression of the alanine racemase (''alr'') and thereby take advantage of the double-kill switch. Although the rhamnose promoter P<sub>''Rha''</sub> is characterized by a very low basal transcription it can not be used for the control of the toxic RNase Ba ([https://2013.igem.org/Team:Bielefeld-Germany/Biosafety/Biosafety_System_L#RNase_Ba_.28Barnase.29 Barnase]), which ist needed for the alanine racemase (''alr''), the other part of the double-kill switch. In conclusion this promoter is the best choice for the first part of the Biosafety-System, as it is tightly repressed in the absence of L-rhamnose, but activated in its presence.</p>
<br>
<br>
-
==='''lacI'''===
+
==='''Repressor LacI'''===
<br>
<br>
[[Image:IGEM Bielefeld 2013 biosafety lacI test.png|left]]
[[Image:IGEM Bielefeld 2013 biosafety lacI test.png|left]]
<p align="justify">
<p align="justify">
-
Naturally the lac operon regulates the catabolism of the disaccharide lactose (4-O-(β-D-Galactopyranosyl)-D-glucopyranose) in ''E. coli''. The operon contains the lactose promoter (plac) and the genes for the catabolism of the Lactose to Glucose and Galactose. Upstream of the lac operator exists the coding sequence for the repressor lacI under the control of a weak promoter ([https://2013.igem.org/Team:Bielefeld-Germany/Biosafety/Biosafety_System_L#References Jacob ''et al.'', 1961]). <br>
+
Naturally the ''lacZYA'' operon encodes the genes for the direct catabolism of the disaccharide lactose in ''E. coli''. The operon contains the lactose promoter P<sub>''lac''</sub> and the genes for the catabolism of lactose to glucose and galactose. Upstream of the ''lac'' operator, in opposite orientation, the coding sequence for the repressor LacI under the control of a weak promoter is located ([https://2013.igem.org/Team:Bielefeld-Germany/Biosafety/Biosafety_System_L#References Jacob ''et al.'', 1961]). <br>
-
Compared to the catabolism of the sugars L-Rhamnose or L-arabinose Lactose, as a disaccharide has a higher energy content and is therefore used more preferable. This is a reason, why the basal transcription of this promoter is even more higher. The leakiness of the lac promoter is caused by the fact that the lacY need to be expressed for an efficient Lactose uptake, while in the arabinose system the uptake is regulated separate ([https://2013.igem.org/Team:Bielefeld-Germany/Biosafety/Biosafety_System_L#References Görke ''et al.'', 2008]). <br>
+
Compared to the catabolism of the sugars L-rhamnose or L-arabinose, lactose, as a disaccharide has a higher energy content and is therefore preferably used. For this reason the basal transcription of this promoter is higher than that of P<sub>''Rha''</sub>. The leakiness of the ''lac'' promoter is caused by the fact that LacY needs to be expressed for an efficient lactose uptake, while the uptake in the arabinose system is regulated separately ([https://2013.igem.org/Team:Bielefeld-Germany/Biosafety/Biosafety_System_L#References Görke ''et al.'', 2008]). <br>
-
In our Safety-System the lacI (<bbpart>BBa_C0012</bbpart>) is used for the repression of the lactose promoter (plac).
+
In our Safety-System the LacI (<bbpart>BBa_C0012</bbpart>) is used for repression of the lactose promoter P<sub>''lac''</sub>.
</p>
</p>
<br>
<br>
-
 
+
==='''Alanine racemase Alr'''===
-
===Alanine Racemase===
+
<br>
<br>
[[Image:IGEM Bielefeld 2013 biosafety alr test.png|left]]
[[Image:IGEM Bielefeld 2013 biosafety alr test.png|left]]
<p align="justify">
<p align="justify">
-
The alanine-racemase alr (EC 5.1.1.1) from the gram-negative enteric bacteria ''Escherichia coli'' is a racemase, which catalyses the reversible reaction from L-alanine into the enantiomer D-alanine. For this reaction the cofactor pyridoxal-5'-phosphate (PLP) is typically needed. The constitutive alanine-racemase (''alr'') is naturally responsible for the accumulation of D-Alanin, which is an essential component of the bacterial cell wall, because it is used for the crosslinkage of the peptidoglykan ([https://2013.igem.org/Team:Bielefeld-Germany/Biosafety/Biosafety_System_S#References Walsh, 1989]).<br>
+
The alanine racemase Alr (EC 5.1.1.1) from the Gram-negative enteric bacteria ''Escherichia coli'' is an isomerase, which catalyses the reversible conversion of L-alanine into the enantiomer D-alanine (see Figure 2). For this reaction, the cofactor pyridoxal-5'-phosphate (PLP) is necessary. The constitutively expressed alanine racemase (''alr'') is naturally responsible for the accumulation of D-alanine. This compound is an essential component of the bacterial cell wall, because it is used for the cross-linkage of peptidoglycan ([https://2013.igem.org/Team:Bielefeld-Germany/Biosafety/Biosafety_System_L#References Walsh, 1989]).<br>
-
The use of D-Alanine instead of a typically L-amino acids prevents the cleavage by peptdidases, but a lack of D-Alanine leeds to a bacteriostatic characteristic. So in the absence of D‑Alanine dividing cells will lyse rapidly. This approach is used by our Biosafety-Strain, a D-alanine auxotrophic mutant (K-12 ∆alr ∆dadX). The Safety-Strain grows only with a plasmid containing the Alanine-Racemase (<bbpart>BBa_K1172901</bbpart>) for the complementation of the D-alanine auxotrophic. Because the Alanine-Racemase is therefore essential for bacterial cell division, this approach guarantees a high plasmid stability, which is extremely important when the plasmid contains a toxic gene like the Barnase. In addition this construction provides the possibility of a double kill-switch system. Because if the expression of the Alanine-Racemase is repressed and there is no D-Alanine-Supplementation in the media, the cells would not increase.</p>
+
The usage of D-alanine instead of a typically L-amino acid prevents cleavage by peptidases. However, a lack of D-alanine causes to a bacteriolytic characteristics. In the absence of D‑alanine dividing cells will lyse rapidly. This fact is used for our Biosafety-Strain, a D-alanine auxotrophic mutant (K-12 ∆''alr'' ∆''dadX''). The Biosafety-Strain grows only with a plasmid containing the alanine racemase (<bbpart>BBa_K1172901</bbpart>) to complement the D-alanine auxotrophy. Consequently the alanine racemase is essential for bacterial cell division. This approach guarantees a high plasmid stability, which is extremely important when the plasmid contains a toxic gene like the [https://2013.igem.org/Team:Bielefeld-Germany/Biosafety/Biosafety_System_L#RNase_Ba_.28Barnase.29 Barnase]. In addition this construction provides the possibility for the implementation of a double kill-switch system. Because if the expression of the alanine racemase is repressed and there is no D-alanine supplementation in the medium, cells will not grow.</p>
<br>
<br>
-
[[Image:IGEM Bielefeld 2013 alr isomerase bearbeitet.png|600px|thumb|center|'''Figure 5:''' The alanine-racemase (<bbpart>BBa_K1172901</bbpart>) from ''E. coli'' catalyses the reversible reaction from L-alanine to D-alanine. For this isomerisation the cofactor pyridoxal-5'-phosphate is necessary.]]
+
[[Image:IGEM Bielefeld 2013 alr isomerase bearbeitet.png|600px|thumb|center|'''Figure 2:''' The alanine racemase (<bbpart>BBa_K1172901</bbpart>) from ''E. coli'' catalyses the reversible conversion from L-alanine to D-alanine. For this isomerization the cofactor pyridoxal-5'-phosphate is necessary.]]
<br>
<br>
-
 
==='''Terminator'''===
==='''Terminator'''===
Line 126: Line 122:
[[File:IGEM Bielefeld 2013 biosafety Terminator.png|left]]
[[File:IGEM Bielefeld 2013 biosafety Terminator.png|left]]
<p align="justify">
<p align="justify">
-
Terminator are essential for the end of an operon. In procaryot exists rho-depending and independing terminator. Rho-independing terminators are characterized by an stem-loop, which is caused by special sequence. In general the terminator-region can be divided into four regions. Starting with a GC-rich region, which performs the stem and followed by the loop-region. The third region is made up from the opposite part of the stem, so that this region concerns also GC-rich portion. After that the terminator ends by an poly uracil region, which destabilizes the binding of the RNA-polymerase. The stem-loop of the terminator causes a distinction of the DNA and the translated RNA, so that the binding of the RNA-polymerase is canceld and the transcription ends after the stem-loop ([https://2013.igem.org/Team:Bielefeld-Germany/Biosafety/Biosafety_System_S#References Carafa ''et al.'', 1990]).<br>
+
Terminators are essential to terminate the transcription of an operon. In procaryotes two types of terminators exist. The rho-dependent and the rho-independent terminator. Rho-independent terminators are characterized by their stem-loop forming sequence. In general, the terminator-region can be divided into four regions. The first region is GC-rich and constitutes one half of the stem. This region is followed by the loop-region and another GC-rich region that makes up the opposite part of the stem. The terminator closes with a poly uracil region, which destabilizes the binding of the RNA-polymerase. The stem-loop of the terminator causes a distinction of the DNA and the translated RNA. Consequently the binding of the RNA-polymerase is cancelled and the transcription ends after the stem-loop ([https://2013.igem.org/Team:Bielefeld-Germany/Biosafety/Biosafety_System_L#References Carafa ''et al.'', 1990]).<br>
-
For our Safety-System the terminator is necessary to avoid that the expression of the genes under the control of the Rhamnose promoter pRHA, like the Repressor araC and the Alanine-Racemase (''alr''), are transcripted but not the genes of the Arabinose promoter pBAD, which contains the toxic Barnase and would lead to cell death.</p>
+
For our Bioafety-System ''Lac of Growth'' the terminator is necessary to avoid that the expression of the genes under control of the rhamnose promoter P<sub>''Rha''</sub>, like the Repressor LacI and the alanine racemase (''alr'') results in the transcription of the genes behind the lactose promoter P<sub>''Lac''</sub> which contains the toxic Barnase <bbpart>BBa_K1172904</bbpart> and would lead to cell death.</p>
<br>
<br>
-
[[File:Team Bielefeld Biosafety Terminator.png|400x600px|thumb|center| '''Figure 6:''' Stem-loop structure of the terminator <bbpart>BBa_B0015</bbpart>, which is used for the biosafety system. The terminator is used to make sure that only the repressor and the Alanine-Racemase is transcripted and avoids a transcription of the toxic Barnase.]]
+
[[File:Team Bielefeld Biosafety Terminator.png|400x600px|thumb|center| '''Figure 3:''' Stem-loop structure of the terminator <bbpart>BBa_B0015</bbpart>, which is used for the Biosafety-System ''Lac of Growth''. The terminator is used to make sure that solely both the repressor LacI and the alanine racemase Alr are expressed but the transcription of the toxic RNase Ba (Barnase) is avoided.]]
<br>
<br>
-
==='''Lactose promoter (plac)'''===
+
==='''Lactose promoter P<sub>''lac''</sub>'''===
<br>
<br>
[[File:IGEM Bielefeld 2013 Biosafety Plac.png|left]]
[[File:IGEM Bielefeld 2013 Biosafety Plac.png|left]]
<p align="justify">
<p align="justify">
-
Naturally the lac operon regulates the catabolism of the disaccharide lactose (4-O-(β-D-Galactopyranosyl)-D-glucopyranose) in ''E. coli''. The operon consists of a CAP-binding site, the lac promoter, the lac operator and the genes lacZ, lacY and lacA downstream of the promoter. The transcription of the lactose promoter is regulated by the lacI gene, which is found upstream of the operon under the control of a weak promoter. In the absence of lactose the transcription of the genes behind the lactose promoter is blocked caused by the binding of the lacI pressor. While in the presence of Lactose the repressor is released from the operator and the genes can be transcripted. Typically the transcription is enhanced by a high intracellular level of cAMP ([https://2013.igem.org/Team:Bielefeld-Germany/Biosafety/Biosafety_System_L#References Busby, 1999]).</p><br>
+
Naturally the ''lacZYA'' operon encodes the genes for the direct catabolism of the disaccharide lactose in ''E. coli''. The operon consists of a CAP-binding site, the ''lac'' promoter, the ''lac'' operator and the genes ''lacZ'', ''lacY'' and ''lacA'' downstream of the promoter. The transcription of the lactose promoter is regulated by the LacI repressor, whose coding sequence is found upstream of the ''lacZYA'' operon under control of a weak promoter (Figure 4).<br>
-
[[File:IGEM Bielefeld 2013 Biosafety laci ohne hintergrund.png|600px|thumb|center|'''Figure 5:'''Structure of the lactose operon and its regulatory units. In the absence of Lactose the trascription of the genes behind the lactose promoter is blocked. In the presens of Lactose a side reaction of the ß-Galactosidase (gene lacZ) synthesis allolactose, who causes a change in conformation of the lacI. The repressor lacI releases the operator sequnece and the transcription of the lactose operons starts.]]
+
In the absence of lactose the transcription of the genes behind the lactose promoter is blocked, caused by the binding of the LacI repressor. In the presence of lactose the repressor is released from the operator sequence and so the genes can be transcribed. Typically the transcription is enhanced by a high intracellular level of cAMP ([https://2013.igem.org/Team:Bielefeld-Germany/Biosafety/Biosafety_System_L#References Busby, 1999]).</p><br>
 +
[[File:IGEM Bielefeld 2013 Biosafety laci ohne hintergrund.png|600px|thumb|center|'''Figure 4:'''Structure of the lactose operon and its regulatory units. In the absence of lactose, transcription of the genes behind the lactose promoter is blocked. In the presence of lactose a side reaction of the ß-galactosidase (LacZ) synthesizes allolactose, which causes a conformation change in the repressor LacI. The repressor LacI releases the operator sequence and the transcription of the genes behind the lactose operons starts.]]
<br>
<br>
<p align="justify">
<p align="justify">
-
The lactose promoter thereby regulates the transcription of the genes lacZ, lacY and lacA. The lacZ gene encodes for the ß-Galactosidase a enzyme, who breaks down the lactose to glucose and galactose. The ß-Galactosidase catalyses additional the degradation from Lactose to Allolactose. By binding on the lacI repressor, it changes his conformation an is not any more able to bind on the operator sequnece and to block the transcription. As only one enzyme is necessary to gain a substrate of the glycolysis is becomes clear, why the degradation of Lactose is more preferable compared to L-arabinose or L-rhamnose. <br>
+
The lactose promoter thereby regulates the transcription of the genes ''lacZ'', ''lacY'' and ''lacA''. ''lacZ'' encodes ß-galactosidase, an enzyme, which breaks down lactose to glucose and galactose. Additionally ß-galactosidase catalyzes the degradation of lactose to allolactose. By binding to the LacI repressor, allolactose changes the conformation of LacI. Thereupon, the repressor is not able to bind to the operator sequence and so the transcription is  not blocked any more. As only one enzyme is necessary to gain a substrate for glycolysis it becomes clear, why the degradation of lactose is more preferable compared to L-arabinose or L-rhamnose. <br>
-
To realize a preference of lactose, the transcription of the lactose promoter is not repressed as that strong. This is caused by the fact that the lacY gene, coding for the integral membrane protein lactose permease, is necessary for the lactose uptake and has to be transcripted on a low level.<br>
+
Lactose, as a disachharide has a higher energy content. Hence, the cell needs to ensure the proper catabolism of lactose, which leads to a less tight regulation of the ''lac'' operon. This is caused by the fact that the ''lacY'' gene, coding for the integral membrane protein lactose permease, is necessary for the lactose uptake and has to be transcribed on a low level.<br>
-
The last gene of the lac operon, lacA, encodes for a Transacetylase, who acetylizes glycosides that can not be metabolized. The acetylated glycosides are transported outside the cell to avoid the accumulation of lactose. <br>
+
The last gene of the ''lacZYA'' operon, ''lacA'', encodes for a transacetylase, which acetylizes glycosides that cannot be metabolized. The acetylated glycosides are transported outside the cell to avoid their accumulation in the cell.<br>
-
In our Biosafety-System the lac-promoter is used for the regulation of GFP or the Barnase. As the lac promoter shows a high basal transcription, its might not ideal for the regulation of a toxic gene product, but the the Biosafety-System Lac of growth is ideal for comparison with the other Systems to measure the level of basal transcription under repressed and unrepressed conditions. Besides we improved the leakiness of the lactose promoter by adding a second lacI-binding site 12 nt downstream of the excisting bining site. As this distance corresponds to about one whorl of the double helix, this should allow an additional lacI repressor to bind on the other site of the DNA and tighten the repression of the lactose promoter. Unfortunately the improvement of the so called double lac promoter could not be quantified, because lac of time ([https://2013.igem.org/Team:Bielefeld-Germany/Biosafety/Biosafety_System_L#References Lewis, 2005]).</p><br>
+
In our Biosafety-System the ''lac'' promoter is used to regulate the expression of the Barnase. Because the native ''lac'' promoter shows a high basal transcription in comparison to the other promoters used, it might be not ideal for the regulation of a toxic gene product. Nevertheless the Biosafety-System ''Lac of Growth'' is ideal for the comparison of the basal transcription with other Biosafety-Systems and the leakiness of the ''lac'' promoter might be reduced by adding a second LacI-binding site 12 nt downstream of the existing binding site. As this distance corresponds to about one helix turn of the double helix, this should allow an additional LacI repressor to bind on the other site of the DNA and tighten the repression of the lactose promoter. Furthermore, the efficiency of the toxic gene product might be lower than expected, so that a higher basal transcription and activation may be needed. It can be concluded that the Biosafety-System ''Lac of Growth'' is  a promising Biosafety-System ([https://2013.igem.org/Team:Bielefeld-Germany/Biosafety/Biosafety_System_L#References Lewis, 2005]).</p><br>
-
===Barnase===
+
==='''RNase Ba (Barnase)'''===
<br>
<br>
[[Image:IGEM Bielefeld 2013 biosafety RNase Ba test.png|left]]
[[Image:IGEM Bielefeld 2013 biosafety RNase Ba test.png|left]]
<p align="justify">
<p align="justify">
-
The Barnase (EC 3.1.27) is an 12 kDa extracellular microbial ribonuclease, which is naturally found in the gram-positive soil bacteria ''Bacillus amyloliquefaciens'' and consist a single chain of 110 amino acids. The Barnase (RNase Ba) catalyses the cleavage of single stranded RNA, where the hydrolysis of the dinucleotides has the highest affinity to the structure GpN. In the first step of the RNA-degradation a cyclic intermediate is formed by transesterification and afterwards this intermediate is hydrolysed yielding in a 3'-nucleotide ([https://2013.igem.org/Team:Bielefeld-Germany/Biosafety/Biosafety_System_S#References Mossakowska ''et al.'', 1989]).</p>
+
The Barnase (EC 3.1.27) is a 12 kDa extracellular microbial ribonuclease, which is naturally found in the Gram-positive soil bacteria ''Bacillus amyloliquefaciens'' and consists of a single chain of 110 amino acids. The Barnase (RNase Ba) catalyses the cleavage of single stranded RNA, preferentially behind Gs. In the first step of the RNA-degradation a cyclic intermediate is formed by transesterification and afterwards this intermediate is hydrolyzed yielding in a 3'-nucleotide ([https://2013.igem.org/Team:Bielefeld-Germany/Biosafety/Biosafety_System_L#References Mossakowska ''et al.'', 1989]).</p>
<br>
<br>
-
[[Image:IGEM Bielefeld 2013 Biosafety Barnasemove.png|600px|thumb|center|'''Figure 8:''' Chemical reaction of the RNA-cleavage by the RNase Ba. First the transesterifiaction by the Glu-73 residue is performed and then this cyclic intermediat is hydrolized by the His-102 of the Barnase.]]
+
[[Image:IGEM Bielefeld 2013 Biosafety Barnasemove.png|600px|thumb|center|'''Figure 5:''' Enzymatic reaction of the RNA-cleavage by the RNase Ba. First the transesterification by the Glu-73 residue is performed and then this cyclic intermediate is hydrolyzed by the His-102 of the Barnase.]]
<br>
<br>
<p align="justify">
<p align="justify">
-
In ''Bacillus amyloliquefaciens'' the activity ot the Barnase (RNase Ba) is inhibited intracelluar by the Inhibitor called barstar. Barstar consists only about 89 amino acids and binds with a high affinity to the toxic Barnase. This prevents the cleavage of the intracellular RNA in the host organism ([https://2013.igem.org/Team:Bielefeld-Germany/Biosafety/Biosafety_System_S#References Paddon ''et al.'', 1989]). Therefore the Barnase acts naturally only outside the cell and is translocated under natural conditions. For the Biosafety-System we tried to modified this aspect by cloning only the sequence responsible for the cleavage of the RNA, but not the part of the native Barnase, which is essential for the extracellular transport.
+
In ''Bacillus amyloliquefaciens'', the activity of the Barnase (RNase Ba) is inhibited intracellular by an inhibitor called barstar. Barstar consists of only 89 amino acids and binds with a high affinity to the toxic Barnase. This prevents the cleavage of the intracellular RNA in the host organism ([https://2013.igem.org/Team:Bielefeld-Germany/Biosafety/Biosafety_System_L#References Paddon ''et al.'', 1989]). Therefore the Barnase normally acts only outside the cell and is translocated under natural conditions. For the Biosafety-System Lac of Growth we modified the enzyme by cloning only the sequence responsible for the cleavage of the RNA, leaving out the N-terminal signal peptide part.
<br>
<br>
-
As shown in the graphic below, the transcription of the DNA, which encodes the Barnase produces a 474 nt RNA. The translation of the RNA of this ribonuclease starts about 25 nucleotides downstream from the transcription start and can be divided into two parts. The first part (colored in orange) is translated into a signal peptide at the N-Terminus of the Barnase. This part is responsible for the extracellular translocation of the RNase Ba, while the peptide sequence for the active Barnase starts 142 nucleotides downstream from the transcription start (colored in red).<br>
+
As shown in Figure 6 below, the transcription of the DNA, which encodes the Barnase produces a 474 nt RNA. The translation of the RNA starts about 25 nucleotides downstream from the transcription start and can be divided into two parts. The first part (colored in orange) is translated into a signal peptide at the amino-terminus of the Barnase coding RNA. This part is responsible for the extracellular translocation of the RNase Ba, while the peptide sequence for the active Barnase starts 142 nucleotides downstream from the transcription start (colored in red).<br>
-
For the Biosafety-System we used only the coding sequence (<bbpart>BBa_K1172904</bbpart>) of the Barnase itself to prevent the extracellular translocation of the toxic gene product. This leads to a rapid cell death if the expression of the Barnase isn't repressed by the repressor of the Biosafety-System.</p>
+
For the Biosafety-System ''Lac of Growth'', we only used the part (<bbpart>BBa_K1172904</bbpart>) of the Barnase encoding the catalytic domain without the extracellular translocation signal of the toxic gene product. Translation of the barnase gene leads to rapid cell death if the expression of the Barnase is not repressed by the repressor LacI of our Biosafety-System.</p>
<br>
<br>
-
[[Image:Team-Bielefeld-Biosafety_Barnase_Sequence.png|600px|thumb|center|'''Figure 9:''' Sequence of the Signalpeptide in front of the RNase Ba (Barnase). The Biobrick <bbpart>BBa_K1172904</bbpart> does not consist the signal sequence for the extracellular translocation, but only the coding sequence for the mature enzyme.]]
+
[[Image:Team-Bielefeld-Biosafety_Barnase_Sequence.png|600px|thumb|center|'''Figure 6:''' Sequence of the signal peptide amino terminal of the RNase Ba (Barnase). The Biobrick <bbpart>BBa_K1172904</bbpart> does not contain the signal sequence for the extracellular translocation, but only the coding sequence for the mature enzyme.]]
<br>
<br>
-
===Biosafety-System Lac of growth===
+
 
-
<p align="justify">
+
 
 +
==='''Biosafety-System Lac of Growth'''===
<br>
<br>
<p align="justify">
<p align="justify">
-
Together with the Biosafety-Strain K-12 ∆alr ∆dadX the Biosafety-System Lac of Growth takes advantage of this genes by combine them to a powerful device, which allows to control the bacterial cell division. The control of the bacterial growth is thereby active and passive possible. Active by inducing the lactose promoter with L-arabinose and passive by the induction of L-Rhamnose. The passive control makes it possible to control the bacterial cell division in an defined environment, like the MFC by adding continously L-Rhamnose to the media. As shown in the figure below, this leads to an expression of the essential Alanine-Racemase (''alr'') and the lacI repressor, so that the expression of the RNase Ba is repressed. </p><br>
+
Combining the genes described above with the Biosafety-Strain K-12 ∆''alr'' ∆''dadX'' results in a powerful device, allowing us to control the bacterial cell division. The control of the bacterial growth is possible either active or passive. Active by inducing the P<sub>''Lac''</sub> promoter with IPTG or classically with lactose and passive by the induction of L-rhamnose. The passive control makes it possible to control the bacterial cell division in a defined closed environment, like the MFC, by continuously adding L-rhamnose to the medium. As shown in Figure 7 below, this leads to an expression of the essential alanine racemase (''alr'') and the LacI repressor, so that the expression of the RNase Ba is repressed. </p><br>
-
[[File:IGEM Bielefeld 2013 Biosafety System L 2.png|600px|thumb|center|'''Figure 10:''' Biosafety-System araCtive in the presens of L-Rhamnose. The essentail Alanine-Racemase (''alr'') and the repressor araC are expressed, so that the expression of the RNAse Ba is repressed and the Bacteria grow.]]
+
[[File:IGEM Bielefeld 2013 Biosafety System L 2.png|600px|thumb|center|'''Figure 7:''' Biosafety-System ''Lac of Growth'' in the presence of L-rhamnose. The essential alanine racemase (Alr) and the repressor LacI are expressed, resulting in a repression of the expression of the RNAse Ba. Consequently the bacteria show normal growth behavior.]]
-
 
+
<br>
<br>
<p align="justify">
<p align="justify">
-
When the bacteria exit the defined environment of the MFC or L-Rhamnose is not added any more to the media, the expression of the Alanine-Racemase (''alr'') and the lacI repressor decreases, so that the expression of the toxic RNase Ba (Barnase) is not inhibted so strong any more. The cleavage of the intracellular RNA by the Barnase and ideally also the lack of synthesized D-alanine, caused by the repressed Alanine-Racemase inhibits the cell division and makes sure that the bacteria can only grow in the defined area. </p><br>
+
In the event that bacteria exit the defined environment of the MFC or L-rhamnose is not added to the medium any more, both the expression of the alanine Racemase (Alr) and the LacI repressor decrease, so that the expression of the toxic RNase Ba (Barnase) begins. The cleavage of the intracellular RNA by the Barnase and the lack of synthesized D-alanine, caused by the repressed alanine racemase inhibit the cell division. Through this it can be secured that the bacteria can only grow in the defined area or the device of choice respectively. </p><br>
-
[[File:IGEM Bielefeld 2013 Biosafety System L ohne Rhamnose 2.png|600px|thumb|center|'''Figure 11:''' Biosafety-System Lac of growth outside the defined conditions and a decreased concentration of L-Rhamnose. The expression of the Alanine-Racemase and lacI repressor is reduced and ideally completly shutdown. In contrast the expression of the RNase ba (Barnase) is sligthly turned on, leading to cell death by RNA cleavage.]]
+
 
 +
[[File:IGEM Bielefeld 2013 Biosafety System L ohne Rhamnose 2.png|600px|thumb|center|'''Figure 8:''' Active Biosafety-System ''Lac of Growth'' outside of a defined environment lacking L-rhamnose. Both the expression of the alanine racemase (Alr) and LacI repressor are reduced and ideally completely shut down. In contrast, the expression of the RNase Ba (Barnase) is turned on, leading to cell death by RNA cleavage.]]
<br><br>
<br><br>
Line 184: Line 182:
<br>
<br>
-
==='''Characterization of the lactose promoter plac'''===
+
==='''Characterization of the lactose promoter P<sub>''lac''</sub>'''===
<p align="justify">
<p align="justify">
-
First of all the bacterial growth under the pressure of the unrepressed lactose promoter plac was investigated on different carbon source. Therefore the cultivation on M9 minimal media with Glucose or Glycerol was characterized. To identify the transcription rate of the unrepressed lactose promoter plac the expression of the green fluorescence protein GFP <bbpart>BBa_E0040</bbpart> behind the plac promoter was used.<br>
+
First the lactose promoter P<sub>''Lac''</sub> was characterized to get a first impression of its basal transcription rate. Therefore the bacterial growth was investigated under the pressure of the unrepressed P<sub>''lac''</sub> promoter on different carbon source using M9 minimal medium with either glucose or glycerol. The transcription rate was identified by fluorescence measurement of GFP <bbpart>BBa_E0040</bbpart> behind the P<sub>''lac''</sub> promoter using the BioBrick <bbpart>BBa_K741002</bbpart>.<br>
-
As shown in figure 12 below, the bacteria adapted better on glucose then on Glycerol. As glucose is the more powerful energy source, because it posses more carbon atoms than glycerol these result was expected before. So more interesting are the fluorescence measurement shown in the figure 13. As it can be seen also the fluorescence depends on the carbon source, but not as strong as it can be seen by the arabinose promoter [https://2013.igem.org/Team:Bielefeld-Germany/Biosafety/Biosafety_System_S pBAD]. <br>
+
As shown in Figure 9 below, the bacteria grew better on glucose then on glycerol. This is due to glucose being the better energy source of these two, because glycerol enters glycolysis at a later step and therefore delivers less energy. Moreover an additional ATP consumption is needed to drive glycerol uptake. For the investigation of the basal transcription the fluorescence measurements, shown in Figure 10, is more interesting.<br>
-
This can be explained by the fact that glucose itself also represses the lactose promoter, while glycerol does not and in comparision to the arabinose system the lactose promoter is known to be more leaky. So in the presence of glucose the intracellular concentration of cAMP is low and represses the inefficient catabolism of lactose, so that the glucose is catabolized first by the bacteria resulting in an optimal growth. In the absence of glucose the concentration of cAMP increases, which enhances the transcription of the most operons, who regulate the enzymes for the catabolism of an alternative carbon source. Therefore the expression of GFP under the control of the lactose promoter decreases on glycerol.</p><br>
+
 
-
[[File:Team-Bielefeld-Biosafety-System_lacofgrowth_plac_OD.jpg|600px|thumb|center|'''Figure 12:''' Characterization of the bacterial growth of the lactose promoter with GFP (<bbpart>BBa_E0040</bbpart>) in the Biosafety-Strain K-12 ∆alr ∆dadX. The M9 media was supplemented with 5 mM D-alanine. It can be seen, that the bacteria grow faster on M9 minimal media glucose than on M9 minimal media glycerol. ]]
+
It can be demonstrated that the fluorescence differs corresponding to the carbon source used. The difference it not that high as observed for the arabinose promoter [https://2013.igem.org/Team:Bielefeld-Germany/Biosafety/Biosafety_System_S#Characterization_of_the_arabinose_promoter_PBAD P<sub>''BAD''</sub>]. But in comparison to the [https://2013.igem.org/Team:Bielefeld-Germany/Biosafety/Biosafety_System_S#Characterization_of_the_arabinose_promoter_TetO tetO] operator the difference is still obvious. This shows that the transcription of the ''lac'' promoter depends on the intracellular cAMP level, but is not as effective as the arabinose promoter P<sub>''BAD''</sub>. So growth on glucose does not cause an additional induction of the lactose promoter P<sub>''lac''</sub>, while growth on glycerol does. In the presence of glucose, the intracellular concentration of cAMP is low. The absence of cAMP results in inactive CAP (carbon utilization activator protein) and thus no induction of more inefficient catabolic routes, like the catabolism of lactose. Therefore, glucose is catabolized first by the bacteria, resulting in an optimal growth. In the absence of glucose, the cAMP level increases which enhances via CAP-cAMP the transcription of most operons encoding enzymes for the catabolism of alternative carbon sources. Therefore, the expression of GFP under the control of the P<sub>''lac''</sub> promoter increases on glycerol.</p><br>
 +
 
 +
[[File:Team-Bielefeld-Biosafety-System_lacofgrowth_plac_OD2.jpg|600px|thumb|center|'''Figure 9:''' Characterization of the bacterial growth of the Biosafety-Strain K-12 ∆''alr'' ∆''dadX'' containing the plasmid <bbpart>BBa_K741002</bbpart> with GFP (<bbpart>BBa_E0040</bbpart>) under the control of the P<sub>''lac''</sub> promoter. The M9 medium was supplemented with 5 mM D-alanine. It could be demonstrated, that the bacteria grow faster on M9 minimal medium containing glucose than on M9 minimal medium with glycerol. ]]
<br>
<br>
-
[[File:Team-Bielefeld-Biosafety-System-Lacofgrowth-fluoro_placGFP.jpg|600px|thumb|center|'''Figure 13:''' Characterization of the fluorescence of lac promoter with GFP (<bbpart>BBa_E0040</bbpart>) in the Biosafety-Strain K-12 ∆alr ∆dadX. The bacteria were cultivated on M9 minimal media with 5 mM D-alanine supplemented]]
+
[[File:Team-Bielefeld-Biosafety-System-Lacofgrowth-fluoro_placGFP.jpg|600px|thumb|center|'''Figure 10:''' Characterization of the fluorescence of the Biosafety-Strain K-12 ∆''alr'' ∆''dadX'' containing the plasmid <bbpart>BBa_K741002</bbpart> with GFP (<bbpart>BBa_E0040</bbpart>) under control of the P<sub>''lac''</sub> promoter. The Biosafety-Strain was cultivated on M9 minimal medium supplemented with 5 mM D-alanine.]]
<br>
<br>
 +
<p align="justify">
<p align="justify">
-
So it can be seen that the building of GFP differs between the cultivation on glucose and the cultivation of glycerol. As the production rate by using glucose as carbon source is always beneath the cultivation with glycerol, this impacts that the expression of GFP under the control of the lac promoter is more repressed in the presence of glucose. As the specific production rate was calculated between every single measurement point the curve is not smoothed and so the fluctuations have to be ignored, as they do not stand for are real fluctuations in the transcription in the expression of GFP. They are caused by the growth curve and the fluorescence curve. And as they are not ideal there exists the fluctuations. But this graph shows clearly the difference between the two carbon sources.</p> <br>
+
The effect that glucose represses the transcription of the P<sub>''lac''</sub> promoter becomes more obvious by calculating the specific production rates of GFP, as shown in Figure 11. The specific production rates were calculated via equation (1) :</p><br>
-
[[File:Team-Bielefeld-Biosafety-System-lacOfGrowth-specProductLACGFP.jpg|600px|thumb|center|'''Figure 13:''' Characterization of the fluorescence of plac promoter with GFP (<bbpart>BBa_E0040</bbpart>) in the Biosafety-Strain K-12 ∆alr ∆dadX ∆araC.]]
+
 +
[[File:IGEM Bielefeld 2013 Sepzifische Produktionsrate.png|600px|center|]]
 +
<br>
 +
<p align="justify">
 +
With the calculation of the specific production rate of GFP it can be demonstrated that the GFP synthesis rates differ between the cultivation on glucose and glycerol. The specific production rate is low, when using glucose as carbon source, but shows a higher more unstable level in the cultivation with glycerol.<br>
 +
Because the specific production rate was calculated between every single measurement point, the curve in Figure 11 is not smoothed and so the fluctuations have to be ignored, as they do not stand for real fluctuations in the expression of GFP. They are caused by measurement variations in the growth curve and the fluorescence curve. And as neither of this curves are ideal, the fluctuations are the result. Nevertheless this graph shows the difference between the two carbon sources.</p><br>
-
==='''Characterization of the Biosafety-System Lac of growth'''===
+
[[File:Team-Bielefeld-Biosafety-System-lacOfGrowth-specProductLACGFP2.jpg|600px|thumb|center|'''Figure 11:''' Specific production rate of GFP expressed via the P<sub>''Lac''</sub> promoter in dependence of different carbon sources.]]
-
[[File:Team-Bielefeld-Biosafety-System-lacOfGrowth-ODALL.jpg|600px|thumb|center|'''Figure 13:''' Characterization of the fluorescence of plac promoter with GFP (<bbpart>BBa_E0040</bbpart>) in the Biosafety-Strain K-12 ∆alr ∆dadX ∆araC.]]
 
-
[[File:Team-Bielefeld-Biosafety-System-Lacofgrowth-FluorALL.jpg|600px|thumb|center|'''Figure 13:''' Characterization of the fluorescence of plac promoter with GFP (<bbpart>BBa_E0040</bbpart>) in the Biosafety-Strain K-12 ∆alr ∆dadX ∆araC.]]
+
==='''Characterization of the Biosafety-System ''Lac of Growth'' '''===
<br>
<br>
<p align="justify">
<p align="justify">
-
From the figure above it can not be seen if the expression of the repressor lacI does effect the transcription of GFP or not. The slower growth of the bacteria is a first indication that the repressor lacI and the Alanine-Racemase are highly expressed, but as the growth of the bacteria shows nearly the same figure than the fluorescence it could be possible that the repressor does not effect the expression level of GFP under the control of the lactose promoter . That the Biosafety-System works as aspected by repressing the expression of GFP in the presence of L-Rhamnose can be seen from figure 18 below. The calculated specific production rate (equation 1) differs, so that the production of GFP in the presence of L-Rhamnose is always lower than in its absence. <br>
+
The Biosafety-System ''Lac of Growth'' was characterized on M9 minimal medium using glycerol as carbon source. As for the characterization of the pure lactose promoter P<sub>''lac''</sub> above, the bacterial growth and the fluorescence of GFP <bbpart>BBa_E0040</bbpart> was measured. Therefore, the wild type and the Biosafety-Strain ''E. coli'' K-12 ∆''alr'' ∆''dadX'' both containing the Biosafety-Plasmid <bbpart>BBa_K1172911</bbpart> were cultivated once with the induction of 1% L-rhamnose and once only on glycerol.<br>
-
As the specific production rate was calculated between every single measurement point the curve is not smoothed and so the fluctuations have to be ignored, as they do not stand for are real fluctuations in the transcription in the expression of GFP. They are caused by the growth curve and the fluorescence curve. And this measured curves are not ideal the calculation of the specific production rate causes the fluctuations. But it can be seen very clear that the production of GFP differ an is much lower, when the bacteria are induced with 1% L-Rhamnose. So the Biosafety-System Lac of Growth works.</p><br>
+
It becomes obvious (Figure 12) that the bacteria, induced with 1 % L-rhamnose (red and black curve) grow obviously slower, than on pure glycerol (orange and blue curve). This might be attributed to the high metabolic burden encountered by the induced bacteria. The expression of the repressor LacI and the alanine racemase (Alr) simultaneously causes a high stress on the cells, so that they grow slower than the uninduced cells which express only GFP. Additionally, it can be observed, that the Biosafety-Strain ''E. coli'' K-12 ∆''alr'' ∆''dadX'' shows a very long lag-phase.
 +
The long lag-phase and the high measured fluorescence can not be explained so far, as the wild type shows normal grow. So further cultivation of the Biosafety-Strain containing the Biosafety-System ''Lac of Growth'' are necessary. In contrast the fluorescence of the wild type containing the Biosafety-System Lac of Growth shows the expected characteristics. It can be observed that the fluorescence of GFP increases in the cultivation on pure glycerol, while it is reduced by the induction of 1% L-rhamnose.</p><br>
-
[[File:Team-Bielefeld-Biosafety-System-Lacofgrowth-specProductSlac.jpg|600px|thumb|center|'''Figure 13:''' Characterization of the fluorescence of plac promoter with GFP (<bbpart>BBa_E0040</bbpart>) in the Biosafety-Strain K-12 ∆alr ∆dadX ∆araC.]]
+
[[File:Team-Bielefeld-Biosafety-System-lacOfGrowth-ODALL.jpg|600px|thumb|center|'''Figure 12:''' Characterization of the bacterial growth of the Biosafety-System ''Lac of Growth'' on M9 minimal medium with glycerol. The Figure compares the wild type K-12 and the Biosafety-Strain K-12 ∆''alr'' ∆''dadX'' containing the Biosafety-Plasmid <bbpart>BBa_K1172911</bbpart> and the induction by 1% L-rhamnose to pure glycerol.]]
-
==='''Conclusion of the Results'''===
+
[[File:Team-Bielefeld-Biosafety-System-Lacofgrowth-FluorALL.jpg|600px|thumb|center|'''Figure 13:''' Characterization of the fluorescence of the Biosafety-System ''Lac of Growth''. The Figure compares the wild type K-12 and the Biosafety-Strain K-12 ∆''alr'' ∆''dadX'' containing the Biosafety-Plasmid <bbpart>BBa_K1172911</bbpart> and the induction by 1% L-rhamnose to pure glycerol.]]
 +
<br>
 +
<p align="justify">
 +
From the data presented above it cannot be determined if the expression of the repressor LacI does affect the transcription of GFP or not. Considering the wild type containing the Biosafety-System, the slower growth is a first indication that the repressor lacI and the alanine racemase (Alr) are highly expressed, but the growth of the bacteria shows nearly the same kinetics as the fluorescence. So it could be possible that the repressor does not affect the expression level of GFP under the control of the lactose promoter P<sub>''lac''</sub>. This becomes more clear by the calculation of the specific production rate of GFP by equation (1) . As shown in Figure 14 below the specific production rate differs between the uninduced Biosafety-System and the Biosafety-System induced by 1% L-rhamnose.<br>
 +
The production of GFP in the presence of L-rhamnose (red curve) is always lower than in its absence (orange curve), so that the expression of GFP is repressed in the presence of L-rhamnose.
 +
Only at the end, the GFP synthesis of the uninduced cultivations seems to be lower. This might be caused by the very fast cell division in the end of the exponential phase, so that cells grow much faster, than expressing GFP.<br>
 +
Because the specific production rate of GFP was calculated between every single measurement point, the curve in Figure 14 is not smoothed and so the fluctuations have to be ignored, as they do not stand for real fluctuations in the expression of GFP. They are caused by measurement variations in the growth curve and the fluorescence curve. But there is a tendency that the production of GFP is lower when the bacteria are induced with 1% L-rhamnose. So the Biosafety-System ''Lac of Growth'' seems to work.</p><br>
-
[[File:Team-Bielefeld-Biosafety-System-Lacofgrowth-Resultbalken.jpg|600px|thumb|center|'''Figure 13:''' Characterization of the fluorescence of plac promoter with GFP (<bbpart>BBa_E0040</bbpart>) in the Biosafety-Strain K-12 ∆alr ∆dadX ∆araC.]]
+
[[File:Team-Bielefeld-Biosafety-System-Lacofgrowth-specProductSlac.jpg|600px|thumb|center|'''Figure 14:''' Specific production rate of GFP for the Biosafety-System ''Lac of Growth'', calculated via equation (1). The production rate of GFP of the uninduced bacteria is significantly higher compared to the bacteria induced with 1% L-rhamnose. The Biosafety-System ''Lac of Growth'' works.]]
 +
 
 +
==='''Conclusions'''===
 +
<br>
 +
<p align="justify">
 +
It could be demonstrated that the Biosafety-System ''Lac of Growth'' works in principle. For example, the expression level of GFP decreased in the presence of L-rhamnose, as can be seen in Figure 15 the specific production rates of GFP after 7,5 hours are compared within the Biosafety-System ''Lac of Growth''. The induction of the Biosafety-System with L-rhamnose leads to a tight repression of the expression of GFP (red bar) when compared to the uninduced state (orange bar). But the level of gene expression is still quite high.<br></p>
 +
<br>
 +
[[File:Team-Bielefeld-Biosafety-System-Lacofgrowth-Resultbalken.jpg|600px|thumb|center|'''Figure 15:''' Comparison of the specific production rate of GFP. Shown are the induced (1% L-rhamnose) Biosafety-System ''Lac of Growth'', the uninduced Biosafety-System ''Lac of Growth'' and the second part of the Biosafety-System (P<sub>''Lac''</sub> - GFP only).]]
 +
 
 +
<br>
 +
<p align="justify">
 +
The Biosafety-System ''Lac of Growth'' works quite well, but in [https://2013.igem.org/Team:Bielefeld-Germany/Biosafety/Biosafety_System#Results comparison] to the other Biosafety-Systems it shows a higher basal transcription in the uninduced cultivation. So this might result in a high lethality rate, when using the toxic Barnase <bbpart>BBa-K1179204</bbpart> instead of GFP. Although this could also be useful for Biosafety-Systems with a lower toxicity than the RNase Ba, the basal transcription could also be reduced by a double ''lac'' promoter with two LacI binding sites.<br>
 +
But a number of problems remain to be fixed. For example, the basal expression of LacI under uninduced conditions is too high. This becomes evident when comparing GFP expression in the uninduced Biosafety-System (orange bar) to the uninduced second part of the Biosafety-System <bbpart>BBa_K741002</bbpart> (purple bar). The strong reduction of GFP expression is likely caused by the basal transcription of the first part of the Biosafety-System containing the LacI repressor which causes a tighter repression of the P<sub>''lac''</sub> promoter, while there is no sufficient amount of LacI in the strain carrying the second part only.<br>
 +
Another improvement of the Biosafety-System could be to adjust the plasmid copy number. The plasmid pSB1C3 we used for the Biosafety-System ''Lac of Growth'' <bbpart>BBa_K1172911</bbpart> is a high copy plasmid, resulting in 100 – 300 copies of the plasmid in each cell. Therefore it could be worthwhile to clone the Biosafety-System into a  medium (15 – 20 copies) or even a low copy plasmid (2 – 12 copies) to take advantage of the double-kill switch on one hand, and to reduce the metabolic pressure triggered by the plasmid on the other hand. Moreover the lower plasmid copy number might simplify the integration of the Barnase instead of GFP. Nevertheless the Biosafety-System ''Lac of Growth'' we constructed can already be used as a kill-switch Biosafety-System and is characterized by a higher plasmid stability compared to common Biosafety-Systems.</p><br>
Line 223: Line 247:
*Carafa, Yves d'Aubenton Brody, Edward and Claude (1990) Thermest Prediction of Rho-independent Escherichia coli Transcription Terminators - A Statistical Analysis of their RNA Stem-Loop Structures [http://ac.els-cdn.com/S0022283699800059/1-s2.0-S0022283699800059-main.pdf?_tid=ede07e2a-2a92-11e3-b889-00000aab0f6c&acdnat=1380629809_2d1a59e395fc69c8608ab8b5aea842f7|''Journal of molecular biology 3: 835 - 858''].
*Carafa, Yves d'Aubenton Brody, Edward and Claude (1990) Thermest Prediction of Rho-independent Escherichia coli Transcription Terminators - A Statistical Analysis of their RNA Stem-Loop Structures [http://ac.els-cdn.com/S0022283699800059/1-s2.0-S0022283699800059-main.pdf?_tid=ede07e2a-2a92-11e3-b889-00000aab0f6c&acdnat=1380629809_2d1a59e395fc69c8608ab8b5aea842f7|''Journal of molecular biology 3: 835 - 858''].
 +
 +
*Casali, N., Preston A. (2003) E. coli Plasmid Vectors - Methods and Applications [http://www.springerprotocols.com/BookToc/doi/10.1385/1592594093 ''Methods in Molecular Biology 235].
*Görke, Boris and Stülke, Jörg (2008) Carbon catabolite repression in bacteria: many ways to make the most out of nutrients [http://www.nature.com/nrmicro/journal/v6/n8/full/nrmicro1932.html|''Nature Reviews Microbiology 6: 613 - 624''].
*Görke, Boris and Stülke, Jörg (2008) Carbon catabolite repression in bacteria: many ways to make the most out of nutrients [http://www.nature.com/nrmicro/journal/v6/n8/full/nrmicro1932.html|''Nature Reviews Microbiology 6: 613 - 624''].
Line 239: Line 265:
*Wickstrum, J.R., Santangelo, T.J., and Egan, S.M. (2005) Cyclic AMP receptor protein and RhaR synergistically activate transcription from the L-rhamnose-responsive rhaSR promoter in Escherichia coli. [http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1251584/?report=reader|''Journal of Bacteriology 187: 6708 – 6719.''].
*Wickstrum, J.R., Santangelo, T.J., and Egan, S.M. (2005) Cyclic AMP receptor protein and RhaR synergistically activate transcription from the L-rhamnose-responsive rhaSR promoter in Escherichia coli. [http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1251584/?report=reader|''Journal of Bacteriology 187: 6708 – 6719.''].
-
 
-
 
-
<!--
 
-
''Agnes Ullmann (2001)'': Escherichia coli Lactose Operon. In: Encyclopedia of Life Sciences
 
-
 
-
 
-
''Stumpp et al.'': Ein neues, L-Rhamnose-induzierbares Expressionssystem für Escherichia coli, In: Biospektrum 6. Jahrgang S. 33
 
-
 
-
 
-
Carsten Voss, Dennis Lindau, and Erwin Flaschel, ''Production of Recombinant RNase Ba and Its Application in Downstream Processing of Plasmid DNA for Pharmaceutical Use'', Biotechnology Progress, 22, '''2006''' p. 737-44.
 
-
 
-
 
-
Danuta E. Mossakowska, Kerstin Nyberg, and Alan R. Fersht, ''Kinetic Characterization of the Recombinant Ribonuclease from Bacillus amyloliquefaciens (Barnase) and Investigation of Key Residues in Catalysis by Site-Directed Mutagenesis'', Biochemistry, 28, '''1989''', p. 3843 – 3850.
 
-
 
-
 
-
C. J. Paddon, N. Vasantha, and R. W. Hartley, ''Translation and Processing of Bacillus amyloliquefaciens Extracellular Rnase'', Journal of Bacteriology, 171, '''1989''', p. 1185 – 1187.
 
-
 
-
 
-
 
-
*Autoren (Jahr) Titel [Link|''Paper Ausgabe: Seiten''].
 
-
-->
 
-
 
<br><br><br><br>
<br><br><br><br>
</div>
</div>

Latest revision as of 03:49, 29 October 2013



Biosafety System Lac of Growth


Overview

Biosafety-System Lac of growth.

The Biosafety-System Lac of Growth <bbpart>BBa_K1172911</bbpart> is an improvement of the BioBrick <bbpart>BBa_K914014</bbpart> by replacing the first promoter PBAD into the rhamnose promoter PRha and the integration of the alanine racemase (alr) <bbpart>BBa_K1172901</bbpart>. The transcription of the Barnase is regulated by the lac promoter and therefore LacI is used as repressor. The Plac promoter is characterized by a high basal transcription so that there is a high lethality rate in this systems. But as there are different challenging opportunities to overcome this problem it is also an interesting Biosafety-System with a high potential use.




Genetic Approach


Rhamnose promoter PRha


IGEM Bielefeld 2013 biosafety Rhamnose-promoter.png

The promoter PRha (<bbpart>BBa_K914003</bbpart>) naturally regulates the catabolism of the hexose L-rhamnose. The advantage to use this promoter is its solely positive regulation. The regulon consists of the gene rhaT for the L-rhamnose transporter and the two operons rhaSR and rhaBAD.
The operon rhaSR encodes the two transcriptional activators RhaS and RhaR, who are responsible for the positive activation of the L-rhamnose catabolism, while the operon rhaBAD encodes the genes for the direct catabolism of L-rhamnose.
When L-rhamnose is present, it acts as an inducer by binding to the regulatory protein RhaR. RhaR regulates its own expression and the expression of the regulatory gene rhaS by repressing or, in the presence of L-rhamnose, activating the operon rhaSR. Normally, the expression level is modest, but it can be enhanced by a higher level of intracellular cAMP, which increases in the absence of glucose. So, in the presence of L-rhamnose and a high concentration of intracellular cAMP, the activator protein RhaR is expressed on higher level, resulting in an activation of the promoter PrhaT for an efficient L-rhamnose uptake and an activation of the operon rhaBAD. The L-rhamnose is than broken down into dihydroxyacetone phosphate and lactate aldehyde by the enzymes encoded by rhaBAD (Wickstrum et al., 2005).
A brief schematic summary of the regulation is shown in Figure 1.



Figure 1: The catabolism of L-rhamnose in E. coli is turned off in general but inducible by L-rhamnose. The induction activates the transcription of the genes rhaS and rhaR, which regulate the L-rhamnose catabolism by positive activation of the rhamnose uptake (rhaT) and its metabolization (rhaBAD).


Dihydroxyacetone phosphate can be metabolized in the glycolysis pathway, while lactate aldehyde is oxidized to lactate under aerobic conditions and reduced to L-1,2,-propandiol under anaerobic conditions.
The degradation of L-rhamnose can be separated in three steps. In the first step the L-rhamnose is turned into L-rhamnulose by an isomerase (gene rhaA). L-rhamnulose is in turn phosphorylated to L-rhamnulose-1-phosphate by a kinase (gene rhaB) and the sugar phosphate is finally hydrolyzed by an aldolase (gene rhaD) to dihydroxyacetone phosphate and lactate aldehyde (Baldoma et al., 1988).
For our Safety-System Lac of Growth, the rhamnose promoter PRha is used to control the expression of the repressor LacI and the essential alanine racemase, because this promoter has an even lower basal transcription then the arabinose promoter PBAD. This is needed to tightly repress the expression of the alanine racemase (alr) and thereby take advantage of the double-kill switch. Although the rhamnose promoter PRha is characterized by a very low basal transcription it can not be used for the control of the toxic RNase Ba (Barnase), which ist needed for the alanine racemase (alr), the other part of the double-kill switch. In conclusion this promoter is the best choice for the first part of the Biosafety-System, as it is tightly repressed in the absence of L-rhamnose, but activated in its presence.


Repressor LacI


IGEM Bielefeld 2013 biosafety lacI test.png

Naturally the lacZYA operon encodes the genes for the direct catabolism of the disaccharide lactose in E. coli. The operon contains the lactose promoter Plac and the genes for the catabolism of lactose to glucose and galactose. Upstream of the lac operator, in opposite orientation, the coding sequence for the repressor LacI under the control of a weak promoter is located (Jacob et al., 1961).
Compared to the catabolism of the sugars L-rhamnose or L-arabinose, lactose, as a disaccharide has a higher energy content and is therefore preferably used. For this reason the basal transcription of this promoter is higher than that of PRha. The leakiness of the lac promoter is caused by the fact that LacY needs to be expressed for an efficient lactose uptake, while the uptake in the arabinose system is regulated separately (Görke et al., 2008).
In our Safety-System the LacI (<bbpart>BBa_C0012</bbpart>) is used for repression of the lactose promoter Plac.


Alanine racemase Alr


IGEM Bielefeld 2013 biosafety alr test.png

The alanine racemase Alr (EC 5.1.1.1) from the Gram-negative enteric bacteria Escherichia coli is an isomerase, which catalyses the reversible conversion of L-alanine into the enantiomer D-alanine (see Figure 2). For this reaction, the cofactor pyridoxal-5'-phosphate (PLP) is necessary. The constitutively expressed alanine racemase (alr) is naturally responsible for the accumulation of D-alanine. This compound is an essential component of the bacterial cell wall, because it is used for the cross-linkage of peptidoglycan (Walsh, 1989).
The usage of D-alanine instead of a typically L-amino acid prevents cleavage by peptidases. However, a lack of D-alanine causes to a bacteriolytic characteristics. In the absence of D‑alanine dividing cells will lyse rapidly. This fact is used for our Biosafety-Strain, a D-alanine auxotrophic mutant (K-12 ∆alrdadX). The Biosafety-Strain grows only with a plasmid containing the alanine racemase (<bbpart>BBa_K1172901</bbpart>) to complement the D-alanine auxotrophy. Consequently the alanine racemase is essential for bacterial cell division. This approach guarantees a high plasmid stability, which is extremely important when the plasmid contains a toxic gene like the Barnase. In addition this construction provides the possibility for the implementation of a double kill-switch system. Because if the expression of the alanine racemase is repressed and there is no D-alanine supplementation in the medium, cells will not grow.


Figure 2: The alanine racemase (<bbpart>BBa_K1172901</bbpart>) from E. coli catalyses the reversible conversion from L-alanine to D-alanine. For this isomerization the cofactor pyridoxal-5'-phosphate is necessary.


Terminator


IGEM Bielefeld 2013 biosafety Terminator.png

Terminators are essential to terminate the transcription of an operon. In procaryotes two types of terminators exist. The rho-dependent and the rho-independent terminator. Rho-independent terminators are characterized by their stem-loop forming sequence. In general, the terminator-region can be divided into four regions. The first region is GC-rich and constitutes one half of the stem. This region is followed by the loop-region and another GC-rich region that makes up the opposite part of the stem. The terminator closes with a poly uracil region, which destabilizes the binding of the RNA-polymerase. The stem-loop of the terminator causes a distinction of the DNA and the translated RNA. Consequently the binding of the RNA-polymerase is cancelled and the transcription ends after the stem-loop (Carafa et al., 1990).
For our Bioafety-System Lac of Growth the terminator is necessary to avoid that the expression of the genes under control of the rhamnose promoter PRha, like the Repressor LacI and the alanine racemase (alr) results in the transcription of the genes behind the lactose promoter PLac which contains the toxic Barnase <bbpart>BBa_K1172904</bbpart> and would lead to cell death.


Figure 3: Stem-loop structure of the terminator <bbpart>BBa_B0015</bbpart>, which is used for the Biosafety-System Lac of Growth. The terminator is used to make sure that solely both the repressor LacI and the alanine racemase Alr are expressed but the transcription of the toxic RNase Ba (Barnase) is avoided.



Lactose promoter Plac


IGEM Bielefeld 2013 Biosafety Plac.png

Naturally the lacZYA operon encodes the genes for the direct catabolism of the disaccharide lactose in E. coli. The operon consists of a CAP-binding site, the lac promoter, the lac operator and the genes lacZ, lacY and lacA downstream of the promoter. The transcription of the lactose promoter is regulated by the LacI repressor, whose coding sequence is found upstream of the lacZYA operon under control of a weak promoter (Figure 4).
In the absence of lactose the transcription of the genes behind the lactose promoter is blocked, caused by the binding of the LacI repressor. In the presence of lactose the repressor is released from the operator sequence and so the genes can be transcribed. Typically the transcription is enhanced by a high intracellular level of cAMP (Busby, 1999).


Figure 4:Structure of the lactose operon and its regulatory units. In the absence of lactose, transcription of the genes behind the lactose promoter is blocked. In the presence of lactose a side reaction of the ß-galactosidase (LacZ) synthesizes allolactose, which causes a conformation change in the repressor LacI. The repressor LacI releases the operator sequence and the transcription of the genes behind the lactose operons starts.


The lactose promoter thereby regulates the transcription of the genes lacZ, lacY and lacA. lacZ encodes ß-galactosidase, an enzyme, which breaks down lactose to glucose and galactose. Additionally ß-galactosidase catalyzes the degradation of lactose to allolactose. By binding to the LacI repressor, allolactose changes the conformation of LacI. Thereupon, the repressor is not able to bind to the operator sequence and so the transcription is not blocked any more. As only one enzyme is necessary to gain a substrate for glycolysis it becomes clear, why the degradation of lactose is more preferable compared to L-arabinose or L-rhamnose.
Lactose, as a disachharide has a higher energy content. Hence, the cell needs to ensure the proper catabolism of lactose, which leads to a less tight regulation of the lac operon. This is caused by the fact that the lacY gene, coding for the integral membrane protein lactose permease, is necessary for the lactose uptake and has to be transcribed on a low level.
The last gene of the lacZYA operon, lacA, encodes for a transacetylase, which acetylizes glycosides that cannot be metabolized. The acetylated glycosides are transported outside the cell to avoid their accumulation in the cell.
In our Biosafety-System the lac promoter is used to regulate the expression of the Barnase. Because the native lac promoter shows a high basal transcription in comparison to the other promoters used, it might be not ideal for the regulation of a toxic gene product. Nevertheless the Biosafety-System Lac of Growth is ideal for the comparison of the basal transcription with other Biosafety-Systems and the leakiness of the lac promoter might be reduced by adding a second LacI-binding site 12 nt downstream of the existing binding site. As this distance corresponds to about one helix turn of the double helix, this should allow an additional LacI repressor to bind on the other site of the DNA and tighten the repression of the lactose promoter. Furthermore, the efficiency of the toxic gene product might be lower than expected, so that a higher basal transcription and activation may be needed. It can be concluded that the Biosafety-System Lac of Growth is a promising Biosafety-System (Lewis, 2005).


RNase Ba (Barnase)


IGEM Bielefeld 2013 biosafety RNase Ba test.png

The Barnase (EC 3.1.27) is a 12 kDa extracellular microbial ribonuclease, which is naturally found in the Gram-positive soil bacteria Bacillus amyloliquefaciens and consists of a single chain of 110 amino acids. The Barnase (RNase Ba) catalyses the cleavage of single stranded RNA, preferentially behind Gs. In the first step of the RNA-degradation a cyclic intermediate is formed by transesterification and afterwards this intermediate is hydrolyzed yielding in a 3'-nucleotide (Mossakowska et al., 1989).


Figure 5: Enzymatic reaction of the RNA-cleavage by the RNase Ba. First the transesterification by the Glu-73 residue is performed and then this cyclic intermediate is hydrolyzed by the His-102 of the Barnase.


In Bacillus amyloliquefaciens, the activity of the Barnase (RNase Ba) is inhibited intracellular by an inhibitor called barstar. Barstar consists of only 89 amino acids and binds with a high affinity to the toxic Barnase. This prevents the cleavage of the intracellular RNA in the host organism (Paddon et al., 1989). Therefore the Barnase normally acts only outside the cell and is translocated under natural conditions. For the Biosafety-System Lac of Growth we modified the enzyme by cloning only the sequence responsible for the cleavage of the RNA, leaving out the N-terminal signal peptide part.
As shown in Figure 6 below, the transcription of the DNA, which encodes the Barnase produces a 474 nt RNA. The translation of the RNA starts about 25 nucleotides downstream from the transcription start and can be divided into two parts. The first part (colored in orange) is translated into a signal peptide at the amino-terminus of the Barnase coding RNA. This part is responsible for the extracellular translocation of the RNase Ba, while the peptide sequence for the active Barnase starts 142 nucleotides downstream from the transcription start (colored in red).
For the Biosafety-System Lac of Growth, we only used the part (<bbpart>BBa_K1172904</bbpart>) of the Barnase encoding the catalytic domain without the extracellular translocation signal of the toxic gene product. Translation of the barnase gene leads to rapid cell death if the expression of the Barnase is not repressed by the repressor LacI of our Biosafety-System.


Figure 6: Sequence of the signal peptide amino terminal of the RNase Ba (Barnase). The Biobrick <bbpart>BBa_K1172904</bbpart> does not contain the signal sequence for the extracellular translocation, but only the coding sequence for the mature enzyme.



Biosafety-System Lac of Growth


Combining the genes described above with the Biosafety-Strain K-12 ∆alrdadX results in a powerful device, allowing us to control the bacterial cell division. The control of the bacterial growth is possible either active or passive. Active by inducing the PLac promoter with IPTG or classically with lactose and passive by the induction of L-rhamnose. The passive control makes it possible to control the bacterial cell division in a defined closed environment, like the MFC, by continuously adding L-rhamnose to the medium. As shown in Figure 7 below, this leads to an expression of the essential alanine racemase (alr) and the LacI repressor, so that the expression of the RNase Ba is repressed.


Figure 7: Biosafety-System Lac of Growth in the presence of L-rhamnose. The essential alanine racemase (Alr) and the repressor LacI are expressed, resulting in a repression of the expression of the RNAse Ba. Consequently the bacteria show normal growth behavior.


In the event that bacteria exit the defined environment of the MFC or L-rhamnose is not added to the medium any more, both the expression of the alanine Racemase (Alr) and the LacI repressor decrease, so that the expression of the toxic RNase Ba (Barnase) begins. The cleavage of the intracellular RNA by the Barnase and the lack of synthesized D-alanine, caused by the repressed alanine racemase inhibit the cell division. Through this it can be secured that the bacteria can only grow in the defined area or the device of choice respectively.


Figure 8: Active Biosafety-System Lac of Growth outside of a defined environment lacking L-rhamnose. Both the expression of the alanine racemase (Alr) and LacI repressor are reduced and ideally completely shut down. In contrast, the expression of the RNase Ba (Barnase) is turned on, leading to cell death by RNA cleavage.



Results


Characterization of the lactose promoter Plac

First the lactose promoter PLac was characterized to get a first impression of its basal transcription rate. Therefore the bacterial growth was investigated under the pressure of the unrepressed Plac promoter on different carbon source using M9 minimal medium with either glucose or glycerol. The transcription rate was identified by fluorescence measurement of GFP <bbpart>BBa_E0040</bbpart> behind the Plac promoter using the BioBrick <bbpart>BBa_K741002</bbpart>.
As shown in Figure 9 below, the bacteria grew better on glucose then on glycerol. This is due to glucose being the better energy source of these two, because glycerol enters glycolysis at a later step and therefore delivers less energy. Moreover an additional ATP consumption is needed to drive glycerol uptake. For the investigation of the basal transcription the fluorescence measurements, shown in Figure 10, is more interesting.
It can be demonstrated that the fluorescence differs corresponding to the carbon source used. The difference it not that high as observed for the arabinose promoter PBAD. But in comparison to the tetO operator the difference is still obvious. This shows that the transcription of the lac promoter depends on the intracellular cAMP level, but is not as effective as the arabinose promoter PBAD. So growth on glucose does not cause an additional induction of the lactose promoter Plac, while growth on glycerol does. In the presence of glucose, the intracellular concentration of cAMP is low. The absence of cAMP results in inactive CAP (carbon utilization activator protein) and thus no induction of more inefficient catabolic routes, like the catabolism of lactose. Therefore, glucose is catabolized first by the bacteria, resulting in an optimal growth. In the absence of glucose, the cAMP level increases which enhances via CAP-cAMP the transcription of most operons encoding enzymes for the catabolism of alternative carbon sources. Therefore, the expression of GFP under the control of the Plac promoter increases on glycerol.


Figure 9: Characterization of the bacterial growth of the Biosafety-Strain K-12 ∆alrdadX containing the plasmid <bbpart>BBa_K741002</bbpart> with GFP (<bbpart>BBa_E0040</bbpart>) under the control of the Plac promoter. The M9 medium was supplemented with 5 mM D-alanine. It could be demonstrated, that the bacteria grow faster on M9 minimal medium containing glucose than on M9 minimal medium with glycerol.


Figure 10: Characterization of the fluorescence of the Biosafety-Strain K-12 ∆alrdadX containing the plasmid <bbpart>BBa_K741002</bbpart> with GFP (<bbpart>BBa_E0040</bbpart>) under control of the Plac promoter. The Biosafety-Strain was cultivated on M9 minimal medium supplemented with 5 mM D-alanine.


The effect that glucose represses the transcription of the Plac promoter becomes more obvious by calculating the specific production rates of GFP, as shown in Figure 11. The specific production rates were calculated via equation (1) :


IGEM Bielefeld 2013 Sepzifische Produktionsrate.png


With the calculation of the specific production rate of GFP it can be demonstrated that the GFP synthesis rates differ between the cultivation on glucose and glycerol. The specific production rate is low, when using glucose as carbon source, but shows a higher more unstable level in the cultivation with glycerol.
Because the specific production rate was calculated between every single measurement point, the curve in Figure 11 is not smoothed and so the fluctuations have to be ignored, as they do not stand for real fluctuations in the expression of GFP. They are caused by measurement variations in the growth curve and the fluorescence curve. And as neither of this curves are ideal, the fluctuations are the result. Nevertheless this graph shows the difference between the two carbon sources.


Figure 11: Specific production rate of GFP expressed via the PLac promoter in dependence of different carbon sources.


Characterization of the Biosafety-System Lac of Growth


The Biosafety-System Lac of Growth was characterized on M9 minimal medium using glycerol as carbon source. As for the characterization of the pure lactose promoter Plac above, the bacterial growth and the fluorescence of GFP <bbpart>BBa_E0040</bbpart> was measured. Therefore, the wild type and the Biosafety-Strain E. coli K-12 ∆alrdadX both containing the Biosafety-Plasmid <bbpart>BBa_K1172911</bbpart> were cultivated once with the induction of 1% L-rhamnose and once only on glycerol.
It becomes obvious (Figure 12) that the bacteria, induced with 1 % L-rhamnose (red and black curve) grow obviously slower, than on pure glycerol (orange and blue curve). This might be attributed to the high metabolic burden encountered by the induced bacteria. The expression of the repressor LacI and the alanine racemase (Alr) simultaneously causes a high stress on the cells, so that they grow slower than the uninduced cells which express only GFP. Additionally, it can be observed, that the Biosafety-Strain E. coli K-12 ∆alrdadX shows a very long lag-phase. The long lag-phase and the high measured fluorescence can not be explained so far, as the wild type shows normal grow. So further cultivation of the Biosafety-Strain containing the Biosafety-System Lac of Growth are necessary. In contrast the fluorescence of the wild type containing the Biosafety-System Lac of Growth shows the expected characteristics. It can be observed that the fluorescence of GFP increases in the cultivation on pure glycerol, while it is reduced by the induction of 1% L-rhamnose.


Figure 12: Characterization of the bacterial growth of the Biosafety-System Lac of Growth on M9 minimal medium with glycerol. The Figure compares the wild type K-12 and the Biosafety-Strain K-12 ∆alrdadX containing the Biosafety-Plasmid <bbpart>BBa_K1172911</bbpart> and the induction by 1% L-rhamnose to pure glycerol.
Figure 13: Characterization of the fluorescence of the Biosafety-System Lac of Growth. The Figure compares the wild type K-12 and the Biosafety-Strain K-12 ∆alrdadX containing the Biosafety-Plasmid <bbpart>BBa_K1172911</bbpart> and the induction by 1% L-rhamnose to pure glycerol.


From the data presented above it cannot be determined if the expression of the repressor LacI does affect the transcription of GFP or not. Considering the wild type containing the Biosafety-System, the slower growth is a first indication that the repressor lacI and the alanine racemase (Alr) are highly expressed, but the growth of the bacteria shows nearly the same kinetics as the fluorescence. So it could be possible that the repressor does not affect the expression level of GFP under the control of the lactose promoter Plac. This becomes more clear by the calculation of the specific production rate of GFP by equation (1) . As shown in Figure 14 below the specific production rate differs between the uninduced Biosafety-System and the Biosafety-System induced by 1% L-rhamnose.
The production of GFP in the presence of L-rhamnose (red curve) is always lower than in its absence (orange curve), so that the expression of GFP is repressed in the presence of L-rhamnose. Only at the end, the GFP synthesis of the uninduced cultivations seems to be lower. This might be caused by the very fast cell division in the end of the exponential phase, so that cells grow much faster, than expressing GFP.
Because the specific production rate of GFP was calculated between every single measurement point, the curve in Figure 14 is not smoothed and so the fluctuations have to be ignored, as they do not stand for real fluctuations in the expression of GFP. They are caused by measurement variations in the growth curve and the fluorescence curve. But there is a tendency that the production of GFP is lower when the bacteria are induced with 1% L-rhamnose. So the Biosafety-System Lac of Growth seems to work.


Figure 14: Specific production rate of GFP for the Biosafety-System Lac of Growth, calculated via equation (1). The production rate of GFP of the uninduced bacteria is significantly higher compared to the bacteria induced with 1% L-rhamnose. The Biosafety-System Lac of Growth works.

Conclusions


It could be demonstrated that the Biosafety-System Lac of Growth works in principle. For example, the expression level of GFP decreased in the presence of L-rhamnose, as can be seen in Figure 15 the specific production rates of GFP after 7,5 hours are compared within the Biosafety-System Lac of Growth. The induction of the Biosafety-System with L-rhamnose leads to a tight repression of the expression of GFP (red bar) when compared to the uninduced state (orange bar). But the level of gene expression is still quite high.


Figure 15: Comparison of the specific production rate of GFP. Shown are the induced (1% L-rhamnose) Biosafety-System Lac of Growth, the uninduced Biosafety-System Lac of Growth and the second part of the Biosafety-System (PLac - GFP only).


The Biosafety-System Lac of Growth works quite well, but in comparison to the other Biosafety-Systems it shows a higher basal transcription in the uninduced cultivation. So this might result in a high lethality rate, when using the toxic Barnase <bbpart>BBa-K1179204</bbpart> instead of GFP. Although this could also be useful for Biosafety-Systems with a lower toxicity than the RNase Ba, the basal transcription could also be reduced by a double lac promoter with two LacI binding sites.
But a number of problems remain to be fixed. For example, the basal expression of LacI under uninduced conditions is too high. This becomes evident when comparing GFP expression in the uninduced Biosafety-System (orange bar) to the uninduced second part of the Biosafety-System <bbpart>BBa_K741002</bbpart> (purple bar). The strong reduction of GFP expression is likely caused by the basal transcription of the first part of the Biosafety-System containing the LacI repressor which causes a tighter repression of the Plac promoter, while there is no sufficient amount of LacI in the strain carrying the second part only.
Another improvement of the Biosafety-System could be to adjust the plasmid copy number. The plasmid pSB1C3 we used for the Biosafety-System Lac of Growth <bbpart>BBa_K1172911</bbpart> is a high copy plasmid, resulting in 100 – 300 copies of the plasmid in each cell. Therefore it could be worthwhile to clone the Biosafety-System into a medium (15 – 20 copies) or even a low copy plasmid (2 – 12 copies) to take advantage of the double-kill switch on one hand, and to reduce the metabolic pressure triggered by the plasmid on the other hand. Moreover the lower plasmid copy number might simplify the integration of the Barnase instead of GFP. Nevertheless the Biosafety-System Lac of Growth we constructed can already be used as a kill-switch Biosafety-System and is characterized by a higher plasmid stability compared to common Biosafety-Systems.



References

  • Baldoma L and Aguilar J (1988) Metabolism of L-Fucose and L-Rhamnose in Escherichia coli: Aerobic-Anaerobic Regulation of L-Lactaldehyde Dissimilation [http://www.ncbi.nlm.nih.gov/pmc/articles/PMC210658/pdf/jbacter00179-0434.pdf|Journal of Bacteriology 170: 416 - 421.].
  • Busby S, Ebright RH (1999) Transcription activation by catabolite activator protein (CAP).[http://ac.els-cdn.com/S0022283699931613/1-s2.0-S0022283699931613-main.pdf?_tid=a8f22b74-2cf4-11e3-9457-00000aab0f6c&acdnat=1380891687_f17fd24e5a3e15da96493226fdcaaa10|Journal of molecular biology 239: 199 - 213.].
  • Carafa, Yves d'Aubenton Brody, Edward and Claude (1990) Thermest Prediction of Rho-independent Escherichia coli Transcription Terminators - A Statistical Analysis of their RNA Stem-Loop Structures [http://ac.els-cdn.com/S0022283699800059/1-s2.0-S0022283699800059-main.pdf?_tid=ede07e2a-2a92-11e3-b889-00000aab0f6c&acdnat=1380629809_2d1a59e395fc69c8608ab8b5aea842f7|Journal of molecular biology 3: 835 - 858].
  • Casali, N., Preston A. (2003) E. coli Plasmid Vectors - Methods and Applications [http://www.springerprotocols.com/BookToc/doi/10.1385/1592594093 Methods in Molecular Biology 235].
  • Görke, Boris and Stülke, Jörg (2008) Carbon catabolite repression in bacteria: many ways to make the most out of nutrients [http://www.nature.com/nrmicro/journal/v6/n8/full/nrmicro1932.html|Nature Reviews Microbiology 6: 613 - 624].
  • Jacob, F Monod J (1961) Genetic regulatory mechanisms in the synthesis of proteins. [http://www.ncbi.nlm.nih.gov/pubmed/13718526|Journal of molecular biology 216: 318 - 356].
  • Lewis, Mitchell (2005) The lac repressor [http://www.sciencedirect.com/science/article/pii/S1631069105000685|Comptes rendues biologies 328: 521 – 548].
  • Mossakowska, Danuta E. Nyberg, Kerstin and Fersht, Alan R. (1989) Kinetic Characterization of the Recombinant Ribonuclease from Bacillus amyloliquefaciens (Barnase) and Investigation of Key Residues in Catalysis by Site-Directed Mutagenesis [http://pubs.acs.org/doi/pdf/10.1021/bi00435a033|Biochemistry 28: 3843 - 3850.].
  • Paddon, C. J. Vasantha, N. and Hartley, R. W. (1989) Translation and Processing of Bacillus amyloliquefaciens Extracellular Rnase [http://www.ncbi.nlm.nih.gov/pmc/articles/PMC209718/pdf/jbacter00168-0575.pdf|Journal of Bacteriology 171: 1185 - 1187.].
  • Voss, Carsten Lindau, Dennis and Flaschel, Erwin (2006) Production of Recombinant RNase Ba and Its Application in Downstream Processing of Plasmid DNA for Pharmaceutical Use [http://onlinelibrary.wiley.com/doi/10.1021/bp050417e/pdf|Biotechnology Progress 22: 737 - 744.].
  • Walsh, Christopher (1989) Enzymes in the D-alanine branch of bacterial cell wall peptidoglycan assembly. [http://www.jbc.org/content/264/5/2393.long|Journal of biological chemistry 264: 2393 - 2396.]
  • Wickstrum, J.R., Santangelo, T.J., and Egan, S.M. (2005) Cyclic AMP receptor protein and RhaR synergistically activate transcription from the L-rhamnose-responsive rhaSR promoter in Escherichia coli. [http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1251584/?report=reader|Journal of Bacteriology 187: 6708 – 6719.].